예제 #1
0
def test_nbors():
    box = [[5.493642, 0, 0], [0, 5.493642, 0], [0, 0, 5.493642]]
    elements = ["Si", "Si", "Si", "Si", "Si", "Si", "Si", "Si"]
    coords = [
        [0, 0, 0],
        [0.25, 0.25, 0.25],
        [0.000000, 0.500000, 0.500000],
        [0.250000, 0.750000, 0.750000],
        [0.500000, 0.000000, 0.500000],
        [0.750000, 0.250000, 0.750000],
        [0.500000, 0.500000, 0.000000],
        [0.750000, 0.750000, 0.250000],
    ]
    coords = np.array(coords)
    # box = [[2.715, 2.715, 0], [0, 2.715, 2.715], [2.715, 0, 2.715]]
    # coords = [[0, 0, 0], [0.25, 0.25, 0.25]]
    # elements = ["Si", "Si"]
    Si = Atoms(lattice_mat=box, coords=coords, elements=elements)
    nb = NeighborsAnalysis(Si).get_all_distributions
    tmp = round((nb["rdf"][-3]), 2)
    assert (tmp) == (4.08)
예제 #2
0
    def from_atoms(
        atoms=None,
        get_prim=False,
        zero_diag=False,
        node_atomwise_angle_dist=False,
        node_atomwise_rdf=False,
        features="basic",
        enforce_c_size=10.0,
        max_n=100,
        max_cut=5.0,
        verbose=False,
        make_colormap=True,
    ):
        """
        Get Networkx graph. Requires Networkx installation.

        Args:
             atoms: jarvis.core.Atoms object.

             rcut: cut-off after which distance will be set to zero
                   in the adjacency matrix.

             features: Node features.
                       'atomic_number': graph with atomic numbers only.
                       'cfid': 438 chemical descriptors from CFID.
                       'basic':10 features
                       'atomic_fraction': graph with atomic fractions
                                         in 103 elements.
                       array: array with CFID chemical descriptor names.
                       See: jarvis/core/specie.py

             enforce_c_size: minimum size of the simulation cell in Angst.
        """
        if get_prim:
            atoms = atoms.get_primitive_atoms
        dim = get_supercell_dims(atoms=atoms, enforce_c_size=enforce_c_size)
        atoms = atoms.make_supercell(dim)

        adj = np.array(atoms.raw_distance_matrix.copy())

        # zero out edges with bond length greater than threshold
        adj[adj >= max_cut] = 0

        if zero_diag:
            np.fill_diagonal(adj, 0.0)
        nodes = np.arange(atoms.num_atoms)
        if features == "atomic_number":
            node_attributes = np.array(
                [[np.array(Specie(i).Z)] for i in atoms.elements],
                dtype="float",
            )
        if features == "atomic_fraction":
            node_attributes = []
            fracs = atoms.composition.atomic_fraction_array
            for i in fracs:
                node_attributes.append(np.array([float(i)]))
            node_attributes = np.array(node_attributes)

        elif features == "basic":
            feats = [
                "Z",
                "coulmn",
                "row",
                "X",
                "atom_rad",
                "nsvalence",
                "npvalence",
                "ndvalence",
                "nfvalence",
                "first_ion_en",
                "elec_aff",
            ]
            node_attributes = []
            for i in atoms.elements:
                tmp = []
                for j in feats:
                    tmp.append(Specie(i).element_property(j))
                node_attributes.append(tmp)
            node_attributes = np.array(node_attributes, dtype="float")
        elif features == "cfid":
            node_attributes = np.array(
                [np.array(Specie(i).get_descrp_arr) for i in atoms.elements],
                dtype="float",
            )
        elif isinstance(features, list):
            node_attributes = []
            for i in atoms.elements:
                tmp = []
                for j in features:
                    tmp.append(Specie(i).element_property(j))
                node_attributes.append(tmp)
            node_attributes = np.array(node_attributes, dtype="float")
        else:
            print("Please check the input options.")
        if node_atomwise_rdf or node_atomwise_angle_dist:
            nbr = NeighborsAnalysis(atoms,
                                    max_n=max_n,
                                    verbose=verbose,
                                    max_cut=max_cut)
        if node_atomwise_rdf:
            node_attributes = np.concatenate(
                (node_attributes, nbr.atomwise_radial_dist()), axis=1)
            node_attributes = np.array(node_attributes, dtype="float")
        if node_atomwise_angle_dist:
            node_attributes = np.concatenate(
                (node_attributes, nbr.atomwise_angle_dist()), axis=1)
            node_attributes = np.array(node_attributes, dtype="float")

        # construct edge list
        uv = []
        edge_features = []
        for ii, i in enumerate(atoms.elements):
            for jj, j in enumerate(atoms.elements):
                bondlength = adj[ii, jj]
                if bondlength > 0:
                    uv.append((ii, jj))
                    edge_features.append(bondlength)

        edge_attributes = edge_features

        if make_colormap:
            sps = atoms.uniq_species
            color_dict = random_colors(number_of_colors=len(sps))
            new_colors = {}
            for i, j in color_dict.items():
                new_colors[sps[i]] = j
            color_map = []
            for ii, i in enumerate(atoms.elements):
                color_map.append(new_colors[i])
        return Graph(
            nodes=nodes,
            edges=uv,
            node_attributes=np.array(node_attributes),
            edge_attributes=np.array(edge_attributes),
            color_map=color_map,
        )
예제 #3
0
파일: cfid.py 프로젝트: zishengz/jarvis
    def get_comp_descp(
        self,
        jcell=True,
        jmean_chem=True,
        jmean_chg=True,
        jrdf=False,
        jrdf_adf=True,
        print_names=False,
    ):
        """
        Get chemo-structural CFID decriptors.

        Args:

            struct: Structure object

            jcell: whether to use cell-size descriptors

            jmean_chem: whether to use average chemical descriptors

            jmean_chg: whether to use average charge distribution descriptors

            jmean_rdf: whether to use radial distribution descriptors

            jrdf_adf: whether to use radial and angle distribution descriptors

            print_names: whether to print names of descriptors

        Returns:
          cat: catenated final descriptors
        """
        cat = []
        s = self._atoms
        cell = []
        mean_chem = []
        rdf = []
        nn = []
        mean_chg = []
        adfa = []
        adfb = []
        ddf = []
        if jmean_chem:
            el_dict = s.composition._content
            # print (el_dict,type(el_dict))
            arr = []
            for k, v in el_dict.items():
                des = Specie(k).get_descrp_arr
                arr.append(des)
            mean_chem = np.mean(np.array(arr), axis=0)
            # print ('mean_chem',len(mean_chem))

        if jcell:
            v_pa = round(float(s.volume) / float(s.num_atoms), 5)
            logv_pa = round(log(v_pa), 5)
            pf = s.packing_fraction
            density = round(s.density, 5)
            cell = np.array([v_pa, logv_pa, pf, density])
            # print ('jcell',len(cell))

        if jrdf:
            Nbrs = NeighborsAnalysis(s)
            _, distrdf, nn = Nbrs.get_rdf()
            rdf = np.array(distrdf)
            print("rdf", len(rdf))

        if jrdf_adf:
            try:
                adfa = np.zeros(179)
                adfb = np.zeros(179)
                ddf = np.zeros(179)
                rdf = np.zeros(100)
                nn = np.zeros(100)
                distributions = NeighborsAnalysis(s).get_all_distributions
                rdf = distributions["rdf"]
                nn = distributions["nn"]
                adfa = distributions["adfa"]
                adfb = distributions["adfb"]
                ddf = distributions["ddf"]

            except Exception:
                pass
            adfa = np.array(adfa)
            adfb = np.array(adfb)
            rdf = np.array(rdf)
            ddf = np.array(ddf)
            nn = np.array(nn)
            # print ('adfa',len(adfa))
            # print ('ddf',len(ddf))
            # print ('adfb',len(adfb))
            # print ('rdf',len(rdf))
            # print ('nn',len(nn))

        if jmean_chg:
            chgarr = []
            el_dict = s.composition._content
            for k, v in el_dict.items():
                chg = Specie(k).get_chgdescrp_arr
                chgarr.append(chg)
            mean_chg = np.mean(chgarr, axis=0)
            # print ('mean_chg',len(mean_chg))

        if print_names:
            nmes = []
            chem_nm = get_descrp_arr_name()
            for d, nm in zip(
                [mean_chem, cell, mean_chg, rdf,
                 adfa, adfb, ddf, nn],
                ["mean_chem", "cell", "mean_chg",
                 "rdf", "adfa", "adfb", "ddf", "nn"],
            ):
                if len(d) != 0:
                    for ff, dd in enumerate(d):
                        cat.append(dd)
                        if nm == "mean_chem":
                            tag = chem_nm[ff]
                        else:
                            tag = str(nm) + str("_") + str(ff)
                        nmes.append(str(tag))
            cat = np.array(cat).astype(float)
            # print (nmes,len(nmes))
            return nmes
        else:
            for d, nm in zip(
                [mean_chem, cell, mean_chg, rdf,
                 adfa, adfb, ddf, nn],
                ["mean_chem", "cell", "mean_chg",
                 "rdf", "adfa", "adfb", "ddf", "nn"],
            ):
                if len(d) != 0:
                    # if d != []:
                    for ff, dd in enumerate(d):
                        cat.append(dd)
            cat = np.array(cat).astype(float)
        return cat
예제 #4
0
def test_nbors():
    box = [[5.493642, 0, 0], [0, 5.493642, 0], [0, 0, 5.493642]]
    elements = ["Si", "Si", "Si", "Si", "Si", "Si", "Si", "Si"]
    coords = [
        [0, 0, 0],
        [0.25, 0.25, 0.25],
        [0.000000, 0.500000, 0.500000],
        [0.250000, 0.750000, 0.750000],
        [0.500000, 0.000000, 0.500000],
        [0.750000, 0.250000, 0.750000],
        [0.500000, 0.500000, 0.000000],
        [0.750000, 0.750000, 0.250000],
    ]
    coords = np.array(coords)
    # box = [[2.715, 2.715, 0], [0, 2.715, 2.715], [2.715, 0, 2.715]]
    # coords = [[0, 0, 0], [0.25, 0.25, 0.25]]
    # elements = ["Si", "Si"]
    Si = Atoms(lattice_mat=box, coords=coords, elements=elements)
    nbr = NeighborsAnalysis(Si)
    nb = nbr.get_all_distributions
    tmp = round((nb["rdf"][-3]), 2)
    assert (tmp) == (4.08)
    nbr.get_rdf(plot=True)
    # nbr.ang_dist(nbor_info=info,plot=True)
    nbr.ang_dist_first(plot=True)
    nbr.ang_dist_second(plot=True)
    nbr.get_ddf(plot=True)
    angs = nbr.atomwise_angle_dist()
    ardf = nbr.atomwise_radial_dist()
    cmd = "rm *.png"
    os.system(cmd)