예제 #1
0
파일: linalg.py 프로젝트: yashk2810/jax
def multi_dot(arrays, *, precision=None):
    n = len(arrays)
    # optimization only makes sense for len(arrays) > 2
    if n < 2:
        raise ValueError("Expecting at least two arrays.")
    elif n == 2:
        return jnp.dot(arrays[0], arrays[1], precision=precision)

    arrays = [jnp.asarray(a) for a in arrays]

    # save original ndim to reshape the result array into the proper form later
    ndim_first, ndim_last = arrays[0].ndim, arrays[-1].ndim
    # Explicitly convert vectors to 2D arrays to keep the logic of the internal
    # _multi_dot_* functions as simple as possible.
    if arrays[0].ndim == 1:
        arrays[0] = jnp.atleast_2d(arrays[0])
    if arrays[-1].ndim == 1:
        arrays[-1] = jnp.atleast_2d(arrays[-1]).T
    _assert2d(*arrays)

    # _multi_dot_three is much faster than _multi_dot_matrix_chain_order
    if n == 3:
        result = _multi_dot_three(*arrays, precision)
    else:
        order = _multi_dot_matrix_chain_order(arrays)
        result = _multi_dot(arrays, order, 0, n - 1, precision)

    # return proper shape
    if ndim_first == 1 and ndim_last == 1:
        return result[0, 0]  # scalar
    elif ndim_first == 1 or ndim_last == 1:
        return result.ravel()  # 1-D
    else:
        return result
예제 #2
0
def block_diag(*arrs):
  if len(arrs) == 0:
    arrs = [jnp.zeros((1, 0))]
  arrs = jnp._promote_dtypes(*arrs)
  bad_shapes = [i for i, a in enumerate(arrs) if jnp.ndim(a) > 2]
  if bad_shapes:
    raise ValueError("Arguments to jax.scipy.linalg.block_diag must have at "
                     "most 2 dimensions, got {} at argument {}."
                     .format(arrs[bad_shapes[0]], bad_shapes[0]))
  arrs = [jnp.atleast_2d(a) for a in arrs]
  acc = arrs[0]
  dtype = lax.dtype(acc)
  for a in arrs[1:]:
    _, c = a.shape
    a = lax.pad(a, dtype.type(0), ((0, 0, 0), (acc.shape[-1], 0, 0)))
    acc = lax.pad(acc, dtype.type(0), ((0, 0, 0), (0, c, 0)))
    acc = lax.concatenate([acc, a], dimension=0)
  return acc