예제 #1
0
def _fft_norm(s, func_name, norm):
  if norm is None or norm == "backward":
    return 1
  elif norm == "ortho":
    return jnp.sqrt(jnp.prod(s)) if func_name.startswith('i') else 1/jnp.sqrt(jnp.prod(s))
  elif norm == "forward":
    return jnp.prod(s) if func_name.startswith('i') else 1/jnp.prod(s)
  raise ValueError(f'Invalid norm value {norm}; should be "backward",'
                    '"ortho" or "forward".')
예제 #2
0
파일: linalg.py 프로젝트: xueeinstein/jax
def _sqrtm_triu(T):
    """
  Implements Björck, Å., & Hammarling, S. (1983).
      "A Schur method for the square root of a matrix". Linear algebra and
      its applications", 52, 127-140.
  """
    diag = jnp.sqrt(jnp.diag(T))
    n = diag.size
    U = jnp.diag(diag)

    def i_loop(l, data):
        j, U = data
        i = j - 1 - l
        s = lax.fori_loop(i + 1, j, lambda k, val: val + U[i, k] * U[k, j],
                          0.0)
        value = jnp.where(T[i, j] == s, 0.0,
                          (T[i, j] - s) / (diag[i] + diag[j]))
        return j, U.at[i, j].set(value)

    def j_loop(j, U):
        _, U = lax.fori_loop(0, j, i_loop, (j, U))
        return U

    U = lax.fori_loop(0, n, j_loop, U)
    return U
예제 #3
0
def _gen_recurrence_mask(
        l_max: int,
        is_normalized: bool = True) -> Tuple[jnp.ndarray, jnp.ndarray]:
    """Generates mask for recurrence relation on the remaining entries.

  The remaining entries are with respect to the diagonal and offdiagonal
  entries.

  Args:
    l_max: see `gen_normalized_legendre`.
    is_normalized: True if the recurrence mask is used by normalized associated
      Legendre functions.

  Returns:
    Arrays representing the mask used by the recurrence relations.
  """

    # Computes all coefficients.
    m_mat, l_mat = jnp.mgrid[:l_max + 1, :l_max + 1]
    if is_normalized:
        c0 = l_mat * l_mat
        c1 = m_mat * m_mat
        c2 = 2.0 * l_mat
        c3 = (l_mat - 1.0) * (l_mat - 1.0)
        d0 = jnp.sqrt((4.0 * c0 - 1.0) / (c0 - c1))
        d1 = jnp.sqrt(((c2 + 1.0) * (c3 - c1)) / ((c2 - 3.0) * (c0 - c1)))
    else:
        d0 = (2.0 * l_mat - 1.0) / (l_mat - m_mat)
        d1 = (l_mat + m_mat - 1.0) / (l_mat - m_mat)

    d0_mask_indices = jnp.triu_indices(l_max + 1, 1)
    d1_mask_indices = jnp.triu_indices(l_max + 1, 2)
    d_zeros = jnp.zeros((l_max + 1, l_max + 1))
    d0_mask = d_zeros.at[d0_mask_indices].set(d0[d0_mask_indices])
    d1_mask = d_zeros.at[d1_mask_indices].set(d1[d1_mask_indices])

    # Creates a 3D mask that contains 1s on the diagonal plane and 0s elsewhere.
    # i = jnp.arange(l_max + 1)[:, None, None]
    # j = jnp.arange(l_max + 1)[None, :, None]
    # k = jnp.arange(l_max + 1)[None, None, :]
    i, j, k = jnp.ogrid[:l_max + 1, :l_max + 1, :l_max + 1]
    mask = 1.0 * (i + j - k == 0)

    d0_mask_3d = jnp.einsum('jk,ijk->ijk', d0_mask, mask)
    d1_mask_3d = jnp.einsum('jk,ijk->ijk', d1_mask, mask)

    return (d0_mask_3d, d1_mask_3d)
예제 #4
0
def polydiv(u, v, *, trim_leading_zeros=False):
    _check_arraylike("polydiv", u, v)
    u, v = _promote_dtypes_inexact(u, v)
    m = len(u) - 1
    n = len(v) - 1
    scale = 1. / v[0]
    q = zeros(max(m - n + 1, 1), dtype=u.dtype)  # force same dtype
    for k in range(0, m - n + 1):
        d = scale * u[k]
        q = q.at[k].set(d)
        u = u.at[k:k + n + 1].add(-d * v)
    if trim_leading_zeros:
        # use the square root of finfo(dtype) to approximate the absolute tolerance used in numpy
        return q, trim_zeros_tol(u, tol=sqrt(finfo(u.dtype).eps), trim='f')
    else:
        return q, u
예제 #5
0
파일: linalg.py 프로젝트: ahoenselaar/jax
def norm(x,
         ord=None,
         axis: Union[None, Tuple[int, ...], int] = None,
         keepdims=False):
    x = _promote_arg_dtypes(jnp.asarray(x))
    x_shape = jnp.shape(x)
    ndim = len(x_shape)

    if axis is None:
        # NumPy has an undocumented behavior that admits arbitrary rank inputs if
        # `ord` is None: https://github.com/numpy/numpy/issues/14215
        if ord is None:
            return jnp.sqrt(
                jnp.sum(jnp.real(x * jnp.conj(x)), keepdims=keepdims))
        axis = tuple(range(ndim))
    elif isinstance(axis, tuple):
        axis = tuple(canonicalize_axis(x, ndim) for x in axis)
    else:
        axis = (canonicalize_axis(axis, ndim), )

    num_axes = len(axis)
    if num_axes == 1:
        if ord is None or ord == 2:
            return jnp.sqrt(
                jnp.sum(jnp.real(x * jnp.conj(x)),
                        axis=axis,
                        keepdims=keepdims))
        elif ord == jnp.inf:
            return jnp.amax(jnp.abs(x), axis=axis, keepdims=keepdims)
        elif ord == -jnp.inf:
            return jnp.amin(jnp.abs(x), axis=axis, keepdims=keepdims)
        elif ord == 0:
            return jnp.sum(x != 0,
                           dtype=jnp.finfo(lax.dtype(x)).dtype,
                           axis=axis,
                           keepdims=keepdims)
        elif ord == 1:
            # Numpy has a special case for ord == 1 as an optimization. We don't
            # really need the optimization (XLA could do it for us), but the Numpy
            # code has slightly different type promotion semantics, so we need a
            # special case too.
            return jnp.sum(jnp.abs(x), axis=axis, keepdims=keepdims)
        else:
            abs_x = jnp.abs(x)
            ord = lax._const(abs_x, ord)
            out = jnp.sum(abs_x**ord, axis=axis, keepdims=keepdims)
            return jnp.power(out, 1. / ord)

    elif num_axes == 2:
        row_axis, col_axis = cast(Tuple[int, ...], axis)
        if ord is None or ord in ('f', 'fro'):
            return jnp.sqrt(
                jnp.sum(jnp.real(x * jnp.conj(x)),
                        axis=axis,
                        keepdims=keepdims))
        elif ord == 1:
            if not keepdims and col_axis > row_axis:
                col_axis -= 1
            return jnp.amax(jnp.sum(jnp.abs(x),
                                    axis=row_axis,
                                    keepdims=keepdims),
                            axis=col_axis,
                            keepdims=keepdims)
        elif ord == -1:
            if not keepdims and col_axis > row_axis:
                col_axis -= 1
            return jnp.amin(jnp.sum(jnp.abs(x),
                                    axis=row_axis,
                                    keepdims=keepdims),
                            axis=col_axis,
                            keepdims=keepdims)
        elif ord == jnp.inf:
            if not keepdims and row_axis > col_axis:
                row_axis -= 1
            return jnp.amax(jnp.sum(jnp.abs(x),
                                    axis=col_axis,
                                    keepdims=keepdims),
                            axis=row_axis,
                            keepdims=keepdims)
        elif ord == -jnp.inf:
            if not keepdims and row_axis > col_axis:
                row_axis -= 1
            return jnp.amin(jnp.sum(jnp.abs(x),
                                    axis=col_axis,
                                    keepdims=keepdims),
                            axis=row_axis,
                            keepdims=keepdims)
        elif ord in ('nuc', 2, -2):
            x = jnp.moveaxis(x, axis, (-2, -1))
            if ord == 2:
                reducer = jnp.amax
            elif ord == -2:
                reducer = jnp.amin
            else:
                reducer = jnp.sum
            y = reducer(svd(x, compute_uv=False), axis=-1)
            if keepdims:
                result_shape = list(x_shape)
                result_shape[axis[0]] = 1
                result_shape[axis[1]] = 1
                y = jnp.reshape(y, result_shape)
            return y
        else:
            raise ValueError("Invalid order '{}' for matrix norm.".format(ord))
    else:
        raise ValueError(
            "Invalid axis values ({}) for jnp.linalg.norm.".format(axis))
예제 #6
0
def polyfit(x, y, deg, rcond=None, full=False, w=None, cov=False):
    _check_arraylike("polyfit", x, y)
    deg = core.concrete_or_error(int, deg, "deg must be int")
    order = deg + 1
    # check arguments
    if deg < 0:
        raise ValueError("expected deg >= 0")
    if x.ndim != 1:
        raise TypeError("expected 1D vector for x")
    if x.size == 0:
        raise TypeError("expected non-empty vector for x")
    if y.ndim < 1 or y.ndim > 2:
        raise TypeError("expected 1D or 2D array for y")
    if x.shape[0] != y.shape[0]:
        raise TypeError("expected x and y to have same length")

    # set rcond
    if rcond is None:
        rcond = len(x) * finfo(x.dtype).eps
    rcond = core.concrete_or_error(float, rcond, "rcond must be float")
    # set up least squares equation for powers of x
    lhs = vander(x, order)
    rhs = y

    # apply weighting
    if w is not None:
        _check_arraylike("polyfit", w)
        w, = _promote_dtypes_inexact(w)
        if w.ndim != 1:
            raise TypeError("expected a 1-d array for weights")
        if w.shape[0] != y.shape[0]:
            raise TypeError("expected w and y to have the same length")
        lhs *= w[:, np.newaxis]
        if rhs.ndim == 2:
            rhs *= w[:, np.newaxis]
        else:
            rhs *= w

    # scale lhs to improve condition number and solve
    scale = sqrt((lhs * lhs).sum(axis=0))
    lhs /= scale[np.newaxis, :]
    c, resids, rank, s = linalg.lstsq(lhs, rhs, rcond)
    c = (c.T / scale).T  # broadcast scale coefficients

    if full:
        return c, resids, rank, s, rcond
    elif cov:
        Vbase = linalg.inv(dot(lhs.T, lhs))
        Vbase /= outer(scale, scale)
        if cov == "unscaled":
            fac = 1
        else:
            if len(x) <= order:
                raise ValueError("the number of data points must exceed order "
                                 "to scale the covariance matrix")
            fac = resids / (len(x) - order)
            fac = fac[0]  #making np.array() of shape (1,) to int
        if y.ndim == 1:
            return c, Vbase * fac
        else:
            return c, Vbase[:, :, np.newaxis] * fac
    else:
        return c
예제 #7
0
파일: linalg.py 프로젝트: xueeinstein/jax
def eigh_tridiagonal(d,
                     e,
                     *,
                     eigvals_only=False,
                     select='a',
                     select_range=None,
                     tol=None):
    if not eigvals_only:
        raise NotImplementedError(
            "Calculation of eigenvectors is not implemented")

    def _sturm(alpha, beta_sq, pivmin, alpha0_perturbation, x):
        """Implements the Sturm sequence recurrence."""
        n = alpha.shape[0]
        zeros = jnp.zeros(x.shape, dtype=jnp.int32)
        ones = jnp.ones(x.shape, dtype=jnp.int32)

        # The first step in the Sturm sequence recurrence
        # requires special care if x is equal to alpha[0].
        def sturm_step0():
            q = alpha[0] - x
            count = jnp.where(q < 0, ones, zeros)
            q = jnp.where(alpha[0] == x, alpha0_perturbation, q)
            return q, count

        # Subsequent steps all take this form:
        def sturm_step(i, q, count):
            q = alpha[i] - beta_sq[i - 1] / q - x
            count = jnp.where(q <= pivmin, count + 1, count)
            q = jnp.where(q <= pivmin, jnp.minimum(q, -pivmin), q)
            return q, count

        # The first step initializes q and count.
        q, count = sturm_step0()

        # Peel off ((n-1) % blocksize) steps from the main loop, so we can run
        # the bulk of the iterations unrolled by a factor of blocksize.
        blocksize = 16
        i = 1
        peel = (n - 1) % blocksize
        unroll_cnt = peel

        def unrolled_steps(args):
            start, q, count = args
            for j in range(unroll_cnt):
                q, count = sturm_step(start + j, q, count)
            return start + unroll_cnt, q, count

        i, q, count = unrolled_steps((i, q, count))

        # Run the remaining steps of the Sturm sequence using a partially
        # unrolled while loop.
        unroll_cnt = blocksize

        def cond(iqc):
            i, q, count = iqc
            return jnp.less(i, n)

        _, _, count = lax.while_loop(cond, unrolled_steps, (i, q, count))
        return count

    alpha = jnp.asarray(d)
    beta = jnp.asarray(e)
    supported_dtypes = (jnp.float32, jnp.float64, jnp.complex64,
                        jnp.complex128)
    if alpha.dtype != beta.dtype:
        raise TypeError(
            "diagonal and off-diagonal values must have same dtype, "
            f"got {alpha.dtype} and {beta.dtype}")
    if alpha.dtype not in supported_dtypes or beta.dtype not in supported_dtypes:
        raise TypeError(
            "Only float32 and float64 inputs are supported as inputs "
            "to jax.scipy.linalg.eigh_tridiagonal, got "
            f"{alpha.dtype} and {beta.dtype}")
    n = alpha.shape[0]
    if n <= 1:
        return jnp.real(alpha)

    if jnp.issubdtype(alpha.dtype, jnp.complexfloating):
        alpha = jnp.real(alpha)
        beta_sq = jnp.real(beta * jnp.conj(beta))
        beta_abs = jnp.sqrt(beta_sq)
    else:
        beta_abs = jnp.abs(beta)
        beta_sq = jnp.square(beta)

    # Estimate the largest and smallest eigenvalues of T using the Gershgorin
    # circle theorem.
    off_diag_abs_row_sum = jnp.concatenate(
        [beta_abs[:1], beta_abs[:-1] + beta_abs[1:], beta_abs[-1:]], axis=0)
    lambda_est_max = jnp.amax(alpha + off_diag_abs_row_sum)
    lambda_est_min = jnp.amin(alpha - off_diag_abs_row_sum)
    # Upper bound on 2-norm of T.
    t_norm = jnp.maximum(jnp.abs(lambda_est_min), jnp.abs(lambda_est_max))

    # Compute the smallest allowed pivot in the Sturm sequence to avoid
    # overflow.
    finfo = np.finfo(alpha.dtype)
    one = np.ones([], dtype=alpha.dtype)
    safemin = np.maximum(one / finfo.max, (one + finfo.eps) * finfo.tiny)
    pivmin = safemin * jnp.maximum(1, jnp.amax(beta_sq))
    alpha0_perturbation = jnp.square(finfo.eps * beta_abs[0])
    abs_tol = finfo.eps * t_norm
    if tol is not None:
        abs_tol = jnp.maximum(tol, abs_tol)

    # In the worst case, when the absolute tolerance is eps*lambda_est_max and
    # lambda_est_max = -lambda_est_min, we have to take as many bisection steps
    # as there are bits in the mantissa plus 1.
    # The proof is left as an exercise to the reader.
    max_it = finfo.nmant + 1

    # Determine the indices of the desired eigenvalues, based on select and
    # select_range.
    if select == 'a':
        target_counts = jnp.arange(n, dtype=jnp.int32)
    elif select == 'i':
        if select_range[0] > select_range[1]:
            raise ValueError('Got empty index range in select_range.')
        target_counts = jnp.arange(select_range[0],
                                   select_range[1] + 1,
                                   dtype=jnp.int32)
    elif select == 'v':
        # TODO(phawkins): requires dynamic shape support.
        raise NotImplementedError("eigh_tridiagonal(..., select='v') is not "
                                  "implemented")
    else:
        raise ValueError("'select must have a value in {'a', 'i', 'v'}.")

    # Run binary search for all desired eigenvalues in parallel, starting from
    # the interval lightly wider than the estimated
    # [lambda_est_min, lambda_est_max].
    fudge = 2.1  # We widen starting interval the Gershgorin interval a bit.
    norm_slack = jnp.array(n, alpha.dtype) * fudge * finfo.eps * t_norm
    lower = lambda_est_min - norm_slack - 2 * fudge * pivmin
    upper = lambda_est_max + norm_slack + fudge * pivmin

    # Pre-broadcast the scalars used in the Sturm sequence for improved
    # performance.
    target_shape = jnp.shape(target_counts)
    lower = jnp.broadcast_to(lower, shape=target_shape)
    upper = jnp.broadcast_to(upper, shape=target_shape)
    mid = 0.5 * (upper + lower)
    pivmin = jnp.broadcast_to(pivmin, target_shape)
    alpha0_perturbation = jnp.broadcast_to(alpha0_perturbation, target_shape)

    # Start parallel binary searches.
    def cond(args):
        i, lower, _, upper = args
        return jnp.logical_and(jnp.less(i, max_it),
                               jnp.less(abs_tol, jnp.amax(upper - lower)))

    def body(args):
        i, lower, mid, upper = args
        counts = _sturm(alpha, beta_sq, pivmin, alpha0_perturbation, mid)
        lower = jnp.where(counts <= target_counts, mid, lower)
        upper = jnp.where(counts > target_counts, mid, upper)
        mid = 0.5 * (lower + upper)
        return i + 1, lower, mid, upper

    _, _, mid, _ = lax.while_loop(cond, body, (0, lower, mid, upper))
    return mid
예제 #8
0
파일: signal.py 프로젝트: GJBoth/jax
def _spectral_helper(x,
                     y,
                     fs=1.0,
                     window='hann',
                     nperseg=None,
                     noverlap=None,
                     nfft=None,
                     detrend_type='constant',
                     return_onesided=True,
                     scaling='density',
                     axis=-1,
                     mode='psd',
                     boundary=None,
                     padded=False):
    """LAX-backend implementation of `scipy.signal._spectral_helper`.

  Unlike the original helper function, `y` can be None for explicitly
  indicating auto-spectral (non cross-spectral) computation.  In addition to
  this, `detrend` argument is renamed to `detrend_type` for avoiding internal
  name overlap.
  """
    if mode not in ('psd', 'stft'):
        raise ValueError(f"Unknown value for mode {mode}, "
                         "must be one of: ('psd', 'stft')")

    def make_pad(mode, **kwargs):
        def pad(x, n, axis=-1):
            pad_width = [(0, 0) for unused_n in range(x.ndim)]
            pad_width[axis] = (n, n)
            return jnp.pad(x, pad_width, mode, **kwargs)

        return pad

    boundary_funcs = {
        'even': make_pad('reflect'),
        'odd': odd_ext,
        'constant': make_pad('edge'),
        'zeros': make_pad('constant', constant_values=0.0),
        None: lambda x, *args, **kwargs: x
    }

    # Check/ normalize inputs
    if boundary not in boundary_funcs:
        raise ValueError(f"Unknown boundary option '{boundary}', "
                         f"must be one of: {list(boundary_funcs.keys())}")

    axis = jax.core.concrete_or_error(operator.index, axis,
                                      "axis of windowed-FFT")
    axis = canonicalize_axis(axis, x.ndim)

    if nperseg is not None:  # if specified by user
        nperseg = jax.core.concrete_or_error(int, nperseg,
                                             "nperseg of windowed-FFT")
        if nperseg < 1:
            raise ValueError('nperseg must be a positive integer')
    # parse window; if array like, then set nperseg = win.shape
    win, nperseg = signal_helper._triage_segments(window,
                                                  nperseg,
                                                  input_length=x.shape[axis])

    if noverlap is None:
        noverlap = nperseg // 2
    else:
        noverlap = jax.core.concrete_or_error(int, noverlap,
                                              "noverlap of windowed-FFT")
    if nfft is None:
        nfft = nperseg
    else:
        nfft = jax.core.concrete_or_error(int, nfft, "nfft of windowed-FFT")

    _check_arraylike("_spectral_helper", x)
    x = jnp.asarray(x)

    if y is None:
        outdtype = jax.dtypes.canonicalize_dtype(
            np.result_type(x, np.complex64))
    else:
        _check_arraylike("_spectral_helper", y)
        y = jnp.asarray(y)
        outdtype = jax.dtypes.canonicalize_dtype(
            np.result_type(x, y, np.complex64))
        if mode != 'psd':
            raise ValueError(
                "two-argument mode is available only when mode=='psd'")
        if x.ndim != y.ndim:
            raise ValueError(
                "two-arguments must have the same rank ({x.ndim} vs {y.ndim})."
            )

        # Check if we can broadcast the outer axes together
        try:
            outershape = jnp.broadcast_shapes(tuple_delete(x.shape, axis),
                                              tuple_delete(y.shape, axis))
        except ValueError as e:
            raise ValueError('x and y cannot be broadcast together.') from e

    # Special cases for size == 0
    if y is None:
        if x.size == 0:
            return jnp.zeros(x.shape), jnp.zeros(x.shape), jnp.zeros(x.shape)
    else:
        if x.size == 0 or y.size == 0:
            outshape = tuple_insert(outershape,
                                    min([x.shape[axis], y.shape[axis]]), axis)
            emptyout = jnp.zeros(outshape)
            return emptyout, emptyout, emptyout

    # Move time-axis to the end
    if x.ndim > 1:
        if axis != -1:
            x = jnp.moveaxis(x, axis, -1)
            if y is not None and y.ndim > 1:
                y = jnp.moveaxis(y, axis, -1)

    # Check if x and y are the same length, zero-pad if necessary
    if y is not None:
        if x.shape[-1] != y.shape[-1]:
            if x.shape[-1] < y.shape[-1]:
                pad_shape = list(x.shape)
                pad_shape[-1] = y.shape[-1] - x.shape[-1]
                x = jnp.concatenate((x, jnp.zeros(pad_shape)), -1)
            else:
                pad_shape = list(y.shape)
                pad_shape[-1] = x.shape[-1] - y.shape[-1]
                y = jnp.concatenate((y, jnp.zeros(pad_shape)), -1)

    if nfft < nperseg:
        raise ValueError('nfft must be greater than or equal to nperseg.')
    if noverlap >= nperseg:
        raise ValueError('noverlap must be less than nperseg.')
    nstep = nperseg - noverlap

    # Apply paddings
    if boundary is not None:
        ext_func = boundary_funcs[boundary]
        x = ext_func(x, nperseg // 2, axis=-1)
        if y is not None:
            y = ext_func(y, nperseg // 2, axis=-1)

    if padded:
        # Pad to integer number of windowed segments
        # I.e make x.shape[-1] = nperseg + (nseg-1)*nstep, with integer nseg
        nadd = (-(x.shape[-1] - nperseg) % nstep) % nperseg
        zeros_shape = list(x.shape[:-1]) + [nadd]
        x = jnp.concatenate((x, jnp.zeros(zeros_shape)), axis=-1)
        if y is not None:
            zeros_shape = list(y.shape[:-1]) + [nadd]
            y = jnp.concatenate((y, jnp.zeros(zeros_shape)), axis=-1)

    # Handle detrending and window functions
    if not detrend_type:

        def detrend_func(d):
            return d
    elif not hasattr(detrend_type, '__call__'):

        def detrend_func(d):
            return detrend(d, type=detrend_type, axis=-1)
    elif axis != -1:
        # Wrap this function so that it receives a shape that it could
        # reasonably expect to receive.
        def detrend_func(d):
            d = jnp.moveaxis(d, axis, -1)
            d = detrend_type(d)
            return jnp.moveaxis(d, -1, axis)
    else:
        detrend_func = detrend_type

    if np.result_type(win, np.complex64) != outdtype:
        win = win.astype(outdtype)

    # Determine scale
    if scaling == 'density':
        scale = 1.0 / (fs * (win * win).sum())
    elif scaling == 'spectrum':
        scale = 1.0 / win.sum()**2
    else:
        raise ValueError(f'Unknown scaling: {scaling}')
    if mode == 'stft':
        scale = jnp.sqrt(scale)

    # Determine onesided/ two-sided
    if return_onesided:
        sides = 'onesided'
        if jnp.iscomplexobj(x) or jnp.iscomplexobj(y):
            sides = 'twosided'
            warnings.warn('Input data is complex, switching to '
                          'return_onesided=False')
    else:
        sides = 'twosided'

    if sides == 'twosided':
        freqs = jax.numpy.fft.fftfreq(nfft, 1 / fs)
    elif sides == 'onesided':
        freqs = jax.numpy.fft.rfftfreq(nfft, 1 / fs)

    # Perform the windowed FFTs
    result = _fft_helper(x, win, detrend_func, nperseg, noverlap, nfft, sides)

    if y is not None:
        # All the same operations on the y data
        result_y = _fft_helper(y, win, detrend_func, nperseg, noverlap, nfft,
                               sides)
        result = jnp.conjugate(result) * result_y
    elif mode == 'psd':
        result = jnp.conjugate(result) * result

    result *= scale

    if sides == 'onesided' and mode == 'psd':
        end = None if nfft % 2 else -1
        result = result.at[..., 1:end].mul(2)

    time = jnp.arange(nperseg / 2, x.shape[-1] - nperseg / 2 + 1,
                      nperseg - noverlap) / fs
    if boundary is not None:
        time -= (nperseg / 2) / fs

    result = result.astype(outdtype)

    # All imaginary parts are zero anyways
    if y is None and mode != 'stft':
        result = result.real

    # Move frequency axis back to axis where the data came from
    result = jnp.moveaxis(result, -1, axis)

    return freqs, time, result
예제 #9
0
def _gen_associated_legendre(l_max: int, x: jnp.ndarray,
                             is_normalized: bool) -> jnp.ndarray:
    r"""Computes associated Legendre functions (ALFs) of the first kind.

  The ALFs of the first kind are used in spherical harmonics. The spherical
  harmonic of degree `l` and order `m` can be written as
  `Y_l^m(θ, φ) = N_l^m * P_l^m(cos(θ)) * exp(i m φ)`, where `N_l^m` is the
  normalization factor and θ and φ are the colatitude and longitude,
  repectively. `N_l^m` is chosen in the way that the spherical harmonics form
  a set of orthonormal basis function of L^2(S^2). For the computational
  efficiency of spherical harmonics transform, the normalization factor is
  used in the computation of the ALFs. In addition, normalizing `P_l^m`
  avoids overflow/underflow and achieves better numerical stability. Three
  recurrence relations are used in the computation.

  Args:
    l_max: The maximum degree of the associated Legendre function. Both the
      degrees and orders are `[0, 1, 2, ..., l_max]`.
    x: A vector of type `float32`, `float64` containing the sampled points in
      spherical coordinates, at which the ALFs are computed; `x` is essentially
      `cos(θ)`. For the numerical integration used by the spherical harmonics
      transforms, `x` contains the quadrature points in the interval of
      `[-1, 1]`. There are several approaches to provide the quadrature points:
      Gauss-Legendre method (`scipy.special.roots_legendre`), Gauss-Chebyshev
      method (`scipy.special.roots_chebyu`), and Driscoll & Healy
      method (Driscoll, James R., and Dennis M. Healy. "Computing Fourier
      transforms and convolutions on the 2-sphere." Advances in applied
      mathematics 15, no. 2 (1994): 202-250.). The Gauss-Legendre quadrature
      points are nearly equal-spaced along θ and provide exact discrete
      orthogonality, (P^m)^T W P_m = I, where `T` represents the transpose
      operation, `W` is a diagonal matrix containing the quadrature weights,
      and `I` is the identity matrix. The Gauss-Chebyshev points are equally
      spaced, which only provide approximate discrete orthogonality. The
      Driscoll & Healy qudarture points are equally spaced and provide the
      exact discrete orthogonality. The number of sampling points is required to
      be twice as the number of frequency points (modes) in the Driscoll & Healy
      approach, which enables FFT and achieves a fast spherical harmonics
      transform.
    is_normalized: True if the associated Legendre functions are normalized.
      With normalization, `N_l^m` is applied such that the spherical harmonics
      form a set of orthonormal basis functions of L^2(S^2).

  Returns:
    The 3D array of shape `(l_max + 1, l_max + 1, len(x))` containing the values
    of the ALFs at `x`; the dimensions in the sequence of order, degree, and
    evalution points.
  """
    p = jnp.zeros((l_max + 1, l_max + 1, x.shape[0]))

    a_idx = jnp.arange(1, l_max + 1)
    b_idx = jnp.arange(l_max)
    if is_normalized:
        initial_value = 0.5 / jnp.sqrt(jnp.pi)  # The initial value p(0,0).
        f_a = jnp.cumprod(-1 * jnp.sqrt(1.0 + 0.5 / a_idx))
        f_b = jnp.sqrt(2.0 * b_idx + 3.0)
    else:
        initial_value = 1.0  # The initial value p(0,0).
        f_a = jnp.cumprod(1.0 - 2.0 * a_idx)
        f_b = 2.0 * b_idx + 1.0

    p = p.at[(0, 0)].set(initial_value)

    # Compute the diagonal entries p(l,l) with recurrence.
    y = jnp.cumprod(jnp.broadcast_to(jnp.sqrt(1.0 - x * x),
                                     (l_max, x.shape[0])),
                    axis=0)
    p_diag = initial_value * jnp.einsum('i,ij->ij', f_a, y)
    diag_indices = jnp.diag_indices(l_max + 1)
    p = p.at[(diag_indices[0][1:], diag_indices[1][1:])].set(p_diag)

    # Compute the off-diagonal entries with recurrence.
    p_offdiag = jnp.einsum('ij,ij->ij', jnp.einsum('i,j->ij', f_b, x),
                           p[jnp.diag_indices(l_max)])
    offdiag_indices = (diag_indices[0][:l_max], diag_indices[1][:l_max] + 1)
    p = p.at[offdiag_indices].set(p_offdiag)

    # Compute the remaining entries with recurrence.
    d0_mask_3d, d1_mask_3d = _gen_recurrence_mask(l_max,
                                                  is_normalized=is_normalized)

    def body_fun(i, p_val):
        coeff_0 = d0_mask_3d[i]
        coeff_1 = d1_mask_3d[i]
        h = (jnp.einsum(
            'ij,ijk->ijk', coeff_0,
            jnp.einsum('ijk,k->ijk', jnp.roll(p_val, shift=1, axis=1), x)) -
             jnp.einsum('ij,ijk->ijk', coeff_1, jnp.roll(
                 p_val, shift=2, axis=1)))
        p_val = p_val + h
        return p_val

    if l_max > 1:
        p = lax.fori_loop(lower=2,
                          upper=l_max + 1,
                          body_fun=body_fun,
                          init_val=p)

    return p
예제 #10
0
def _gen_derivatives(p: jnp.ndarray, x: jnp.ndarray,
                     is_normalized: bool) -> jnp.ndarray:
    """Generates derivatives of associated Legendre functions of the first kind.

  Args:
    p: The 3D array containing the values of associated Legendre functions; the
      dimensions are in the sequence of order (m), degree (l), and evalution
      points.
    x: A vector of type `float32` or `float64` containing the sampled points.
    is_normalized: True if the associated Legendre functions are normalized.
  Returns:
    The 3D array representing the derivatives of associated Legendre functions
    of the first kind.
  """

    num_m, num_l, num_x = p.shape

    # p_{l-1}^m.
    p_m_lm1 = jnp.pad(p, ((0, 0), (1, 0), (0, 0)))[:, :num_l, :]

    # p_{l-1}^{m+2}.
    p_mp2_lm1 = jnp.pad(p_m_lm1, ((0, 2), (0, 0), (0, 0)))[2:num_m + 2, :, :]

    # p_{l-1}^{m-2}.
    p_mm2_lm1 = jnp.pad(p_m_lm1, ((2, 0), (0, 0), (0, 0)))[:num_m, :, :]

    # Derivative computation requires negative orders.
    if is_normalized:
        raise NotImplementedError(
            'Negative orders for normalization is not implemented yet.')
    else:
        if num_l > 1:
            l_vec = jnp.arange(1, num_l - 1)
            p_p1 = p[1, 1:num_l - 1, :]
            coeff = -1.0 / ((l_vec + 1) * l_vec)
            update_p_p1 = jnp.einsum('i,ij->ij', coeff, p_p1)
            p_mm2_lm1 = p_mm2_lm1.at[ops.index[1, 2:num_l, :]].set(update_p_p1)

        if num_l > 2:
            l_vec = jnp.arange(2, num_l - 1)
            p_p2 = p[2, 2:num_l - 1, :]
            coeff = 1.0 / ((l_vec + 2) * (l_vec + 1) * l_vec)
            update_p_p2 = jnp.einsum('i,ij->ij', coeff, p_p2)
            p_mm2_lm1 = p_mm2_lm1.at[ops.index[0, 3:num_l, :]].set(update_p_p2)

    m_mat, l_mat = jnp.mgrid[:num_m, :num_l]

    coeff_zeros = jnp.zeros((num_m, num_l))
    upper_0_indices = jnp.triu_indices(num_m, 0, num_l)
    zero_vec = jnp.zeros((num_l, ))

    a0 = -0.5 / (m_mat - 1.0)
    a0_masked = coeff_zeros.at[upper_0_indices].set(a0[upper_0_indices])
    a0_masked = a0_masked.at[1, :].set(zero_vec)

    b0 = l_mat + m_mat
    c0 = a0 * (b0 - 2.0) * (b0 - 1.0)
    c0_masked = coeff_zeros.at[upper_0_indices].set(c0[upper_0_indices])
    c0_masked = c0_masked.at[1, :].set(zero_vec)

    # p_l^{m-1}.
    p_mm1_l = (jnp.einsum('ij,ijk->ijk', a0_masked, p_m_lm1) +
               jnp.einsum('ij,ijk->ijk', c0_masked, p_mm2_lm1))

    d0 = -0.5 / (m_mat + 1.0)
    d0_masked = coeff_zeros.at[upper_0_indices].set(d0[upper_0_indices])
    e0 = d0 * b0 * (b0 + 1.0)
    e0_masked = coeff_zeros.at[upper_0_indices].set(e0[upper_0_indices])

    # p_l^{m+1}.
    p_mp1_l = (jnp.einsum('ij,ijk->ijk', d0_masked, p_mp2_lm1) +
               jnp.einsum('ij,ijk->ijk', e0_masked, p_m_lm1))

    f0 = b0 * (l_mat - m_mat + 1.0) / 2.0
    f0_masked = coeff_zeros.at[upper_0_indices].set(f0[upper_0_indices])
    p_derivative = jnp.einsum('ij,ijk->ijk', f0_masked,
                              p_mm1_l) - 0.5 * p_mp1_l

    # Special treatment of the singularity at m = 1.
    if num_m > 1:
        l_vec = jnp.arange(num_l)
        g0 = jnp.einsum('i,ij->ij', (l_vec + 1) * l_vec, p[0, :, :])
        if num_l > 2:
            g0 = g0 - p[2, :, :]
        p_derivative_m0 = jnp.einsum('j,ij->ij', 0.5 / jnp.sqrt(1 - x * x), g0)
        p_derivative = p_derivative.at[1, :, :].set(p_derivative_m0)
        p_derivative = p_derivative.at[1, 0, :].set(jnp.zeros((num_x, )))

    return p_derivative