예제 #1
0
파일: dispatch.py 프로젝트: jbampton/jax
def lower_xla_callable(fun: lu.WrappedFun, device, backend, name,
                       donated_invars, *arg_specs):
  if device is not None and backend is not None:
    raise ValueError("can't specify both a device and a backend for jit, "
                     "got device={} and backend={}".format(device, backend))

  abstract_args, arg_devices = util.unzip2(arg_specs)
  with log_elapsed_time(f"Finished tracing + transforming {fun.__name__} "
                        "for jit in {elapsed_time} sec"):
    jaxpr, out_avals, consts = pe.trace_to_jaxpr_final(
        fun, abstract_args, pe.debug_info_final(fun, "jit"))
  if any(isinstance(c, core.Tracer) for c in consts):
    raise UnexpectedTracerError("Encountered an unexpected tracer.")
  jaxpr, kept_const_idx, kept_var_idx = _prune_unused_inputs(jaxpr)
  consts = [c for i, c in enumerate(consts) if i in kept_const_idx]
  pruned_arg_specs = (a for i, a in enumerate(arg_specs) if i in kept_var_idx)
  abstract_args, arg_devices = util.unzip2(pruned_arg_specs)
  donated_invars = [
      x for i, x in enumerate(donated_invars) if i in kept_var_idx
  ]
  map(prefetch, itertools.chain(consts, jaxpr_literals(jaxpr)))
  jaxpr = apply_outfeed_rewriter(jaxpr)

  nreps = jaxpr_replicas(jaxpr)
  device = _xla_callable_device(nreps, backend, device, arg_devices)
  backend = xb.get_device_backend(device) if device else xb.get_backend(backend)

  # Computations that only produce constants and/or only rearrange their inputs,
  # which are often produced from partial evaluation, don't need compilation,
  # and don't need to evaluate their arguments.
  if not jaxpr.eqns:
    return XlaComputation(
        name, None, True, None, jaxpr=jaxpr, consts=consts, device=device,
        in_avals=abstract_args, out_avals=out_avals, kept_var_idx=kept_var_idx)

  if not _on_exit:
    log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
    if len(abstract_args) > 10:
      msg = f"Compiling {fun.__name__} ({id(fun)}) for {len(abstract_args)} args."
    else:
      msg = f"Compiling {fun.__name__} ({id(fun)} for args {abstract_args}."
    logging.log(log_priority, msg)

  if nreps > 1:
    warnings.warn(
        f"The jitted function {name} includes a pmap. Using "
         "jit-of-pmap can lead to inefficient data movement, as the outer jit "
         "does not preserve sharded data representations and instead collects "
         "input and output arrays onto a single device. "
         "Consider removing the outer jit unless you know what you're doing. "
         "See https://github.com/google/jax/issues/2926.")

  if nreps > xb.device_count(backend):
    raise ValueError(
        f"compiling computation `{name}` that requires {nreps} replicas, but "
        f"only {xb.device_count(backend)} XLA devices are available.")

  if xb.process_count() > 1 and (nreps > 1 or jaxpr_has_pmap(jaxpr)):
    raise NotImplementedError(
        "jit of multi-host pmap not implemented (and jit-of-pmap can cause "
        "extra data movement anyway, so maybe you don't want it after all).")

  # pass long arg lists as tuple for TPU
  tuple_args = len(abstract_args) > 100
  axis_env = xla.AxisEnv(nreps, (), ())
  name_stack = xla.new_name_stack(xla.wrap_name(name, 'jit'))
  closed_jaxpr = core.ClosedJaxpr(jaxpr, consts)
  module: Union[str, xc.XlaComputation]
  module_name = f"jit_{fun.__name__}"
  if config.jax_enable_mlir:
    module = mlir.lower_jaxpr_to_module(
        module_name, closed_jaxpr, backend.platform,
        mlir.ReplicaAxisContext(axis_env), name_stack, donated_invars)
  else:
    module = xla.lower_jaxpr_to_xla_module(
        module_name, closed_jaxpr, backend.platform, axis_env,
        name_stack, tuple_args, donated_invars, replicated_args=None,
        arg_partitions=None, out_partitions=None)
  return XlaComputation(
      name, module, False, donated_invars, nreps=nreps, device=device,
      backend=backend, tuple_args=tuple_args, in_avals=abstract_args,
      out_avals=out_avals, kept_var_idx=kept_var_idx)
예제 #2
0
파일: dispatch.py 프로젝트: cloudhan/jax
def lower_xla_callable(fun: lu.WrappedFun, device, backend, name,
                       donated_invars, always_lower: bool, keep_unused: bool,
                       *arg_specs):
    """Lower into XLA.

  Args:
    always_lower: If `True`, even trivial programs (not doing any computation
      such as lambda x: x) will be lowered into an XLA program.
    keep_unused: If `False` (the default), arguments that JAX determines to be
      unused by `fun` *may* be dropped from resulting compiled XLA executables.
      Such arguments will not be transferred to the device nor provided to the
      underlying executable. If `True`, unused arguments will not be pruned.
  """
    if device is not None and backend is not None:
        raise ValueError("can't specify both a device and a backend for jit, "
                         "got device={} and backend={}".format(
                             device, backend))
    abstract_args, arg_devices = util.unzip2(arg_specs)
    if fun.in_type is not None:
        abstract_args, which_explicit = util.unzip2(fun.in_type)
    else:
        which_explicit = None
    with log_elapsed_time(f"Finished tracing + transforming {fun.__name__} "
                          "for jit in {elapsed_time} sec"):
        jaxpr, out_avals, consts = pe.trace_to_jaxpr_final(
            fun, abstract_args, pe.debug_info_final(fun, "jit"),
            which_explicit)
    if any(isinstance(c, core.Tracer) for c in consts):
        raise UnexpectedTracerError("Encountered an unexpected tracer.")
    # TODO(mattjj): handle argument pruning w/ dynamic shapes
    if fun.in_type is None and not keep_unused:
        jaxpr, kept_const_idx, kept_var_idx = _prune_unused_inputs(jaxpr)
        consts = [c for i, c in enumerate(consts) if i in kept_const_idx]
        abstract_args, arg_devices = util.unzip2(
            [a for i, a in enumerate(arg_specs) if i in kept_var_idx])
        donated_invars = [
            x for i, x in enumerate(donated_invars) if i in kept_var_idx
        ]
        del kept_const_idx
    else:
        kept_var_idx = set(range(len(abstract_args)))
    map(prefetch, itertools.chain(consts, jaxpr_literals(jaxpr)))
    jaxpr = apply_outfeed_rewriter(jaxpr)

    nreps = jaxpr_replicas(jaxpr)
    device = _xla_callable_device(nreps, backend, device, arg_devices)
    backend = xb.get_device_backend(device) if device else xb.get_backend(
        backend)

    if (config.jax_dynamic_shapes and jaxpr_has_bints(jaxpr)
            and not _backend_supports_unbounded_dynamic_shapes(backend)):
        jaxpr, consts = pe.pad_jaxpr(jaxpr, consts)

    # Computations that only produce constants and/or only rearrange their inputs,
    # which are often produced from partial evaluation, don't need compilation,
    # and don't need to evaluate their arguments.
    if not jaxpr.eqns and not always_lower:
        return XlaComputation(name,
                              None,
                              True,
                              None,
                              None,
                              jaxpr=jaxpr,
                              consts=consts,
                              device=device,
                              in_avals=abstract_args,
                              out_avals=out_avals,
                              has_unordered_effects=False,
                              ordered_effects=[],
                              kept_var_idx=kept_var_idx,
                              keepalive=None)

    if not _on_exit:
        log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
        if len(abstract_args) > 10:
            msg = f"Compiling {fun.__name__} ({id(fun)}) for {len(abstract_args)} args."
        else:
            msg = f"Compiling {fun.__name__} ({id(fun)} for args {abstract_args}."
        logging.log(log_priority, msg)

    if nreps > 1:
        warnings.warn(
            f"The jitted function {name} includes a pmap. Using "
            "jit-of-pmap can lead to inefficient data movement, as the outer jit "
            "does not preserve sharded data representations and instead collects "
            "input and output arrays onto a single device. "
            "Consider removing the outer jit unless you know what you're doing. "
            "See https://github.com/google/jax/issues/2926.")

    if nreps > xb.device_count(backend):
        raise ValueError(
            f"compiling computation `{name}` that requires {nreps} replicas, but "
            f"only {xb.device_count(backend)} XLA devices are available.")

    if xb.process_count() > 1 and (nreps > 1 or jaxpr_has_pmap(jaxpr)):
        raise NotImplementedError(
            "jit of multi-host pmap not implemented (and jit-of-pmap can cause "
            "extra data movement anyway, so maybe you don't want it after all)."
        )

    # pass long arg lists as tuple for TPU
    tuple_args = len(abstract_args) > 100
    axis_env = xla.AxisEnv(nreps, (), ())
    name_stack = util.new_name_stack(util.wrap_name(name, 'jit'))
    closed_jaxpr = core.ClosedJaxpr(jaxpr, consts)
    module_name = f"jit_{fun.__name__}"
    unordered_effects = [
        eff for eff in closed_jaxpr.effects if eff not in core.ordered_effects
    ]
    ordered_effects = [
        eff for eff in closed_jaxpr.effects if eff in core.ordered_effects
    ]
    module, keepalive = mlir.lower_jaxpr_to_module(
        module_name, closed_jaxpr,
        unordered_effects, ordered_effects, backend.platform,
        mlir.ReplicaAxisContext(axis_env), name_stack, donated_invars)
    return XlaComputation(name,
                          module,
                          False,
                          donated_invars,
                          which_explicit,
                          nreps=nreps,
                          device=device,
                          backend=backend,
                          tuple_args=tuple_args,
                          in_avals=abstract_args,
                          out_avals=out_avals,
                          has_unordered_effects=bool(unordered_effects),
                          ordered_effects=ordered_effects,
                          kept_var_idx=kept_var_idx,
                          keepalive=keepalive)