예제 #1
0
def _aval_to_result_handler(npart, parts, aval):
    if aval is not core.abstract_unit:
        spec = pxla.partitioned_sharding_spec(npart, parts, aval)
        indices = pxla.spec_to_indices(aval.shape, spec)
    else:
        spec = indices = None
    return pxla.local_aval_to_result_handler(aval, spec, indices)
예제 #2
0
def _sharded_callable(
        fun: lu.WrappedFun, nparts: Optional[int],
        in_parts: Tuple[pxla.PartitionsOrReplicated, ...],
        out_parts_thunk: Callable[[], Tuple[pxla.PartitionsOrReplicated, ...]],
        local_in_parts: Optional[Tuple[pxla.PartitionsOrReplicated, ...]],
        local_out_parts_thunk: Callable[[], Optional[Tuple[
            pxla.PartitionsOrReplicated,
            ...]]], local_nparts: Optional[int], name: str, *abstract_args):
    nrep = 1

    if local_in_parts is None:
        local_in_parts = in_parts

    global_abstract_args = [
        pxla.get_global_aval(arg, parts,
                             lparts) for arg, parts, lparts in safe_zip(
                                 abstract_args, in_parts, local_in_parts)
    ]

    if logging.vlog_is_on(2):
        logging.vlog(2, "abstract_args: %s", abstract_args)
        logging.vlog(2, "global_abstract_args: %s", global_abstract_args)
        logging.vlog(2, "in_parts: %s", in_parts)
        logging.vlog(2, "local_in_parts: %s", local_in_parts)

    jaxpr, global_out_avals, consts = pe.trace_to_jaxpr_final(
        fun, global_abstract_args)

    platform = xb.get_backend().platform

    nparts = pxla.reconcile_num_partitions(jaxpr, nparts)
    assert nparts is not None
    if nparts > xb.device_count():
        raise ValueError(
            f"sharded_jit computation requires {nparts} devices, "
            f"but only {xb.device_count()} devices are available.")
    if xb.local_device_count() < nparts < xb.device_count():
        raise NotImplementedError(
            f"sharded_jit across multiple hosts must use all available devices. "
            f"Got {nparts} out of {xb.device_count()} requested devices "
            f"(local device count: {xb.local_device_count()})")

    if local_nparts is None:
        if nparts > xb.local_device_count():
            raise ValueError(
                "Specify 'local_nparts' when using cross-process sharded_jit "
                "and all inputs and outputs are replicated.")
        else:
            local_nparts = nparts
    if local_nparts > xb.local_device_count():
        raise ValueError(
            f"sharded_jit computation requires {local_nparts} local devices, "
            f"but only {xb.local_device_count()} local devices are available.")

    if logging.vlog_is_on(2):
        logging.vlog(2, "nparts: %d  local_nparts: %d", nparts, local_nparts)

    out_parts = out_parts_thunk()

    local_out_parts = local_out_parts_thunk()
    if local_out_parts is None:
        local_out_parts = out_parts

    if logging.vlog_is_on(2):
        logging.vlog(2, "out_parts: %s", out_parts)
        logging.vlog(2, "local_out_parts: %s", local_out_parts)

    local_out_avals = [
        pxla.get_local_aval(out, parts,
                            lparts) for out, parts, lparts in safe_zip(
                                global_out_avals, out_parts, local_out_parts)
    ]

    log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
    logging.log(log_priority, "Compiling %s for %d devices with args %s.",
                fun.__name__, nparts, global_abstract_args)

    axis_env = xla.AxisEnv(nrep, (), ())
    unordered_effects = [
        eff for eff in jaxpr.effects if eff not in core.ordered_effects
    ]
    ordered_effects = [
        eff for eff in jaxpr.effects if eff in core.ordered_effects
    ]
    module, _ = mlir.lower_jaxpr_to_module(
        f"spjit_{fun.__name__}",
        core.ClosedJaxpr(jaxpr, consts),
        unordered_effects,
        ordered_effects,
        platform=platform,
        axis_context=mlir.ReplicaAxisContext(axis_env),
        name_stack=new_name_stack(wrap_name(name, "sharded_jit")),
        donated_args=[False] * len(in_parts),
        arg_shardings=safe_map(xla.sharding_to_proto, in_parts),
        result_shardings=safe_map(xla.sharding_to_proto, out_parts))
    built = xc._xla.mlir.mlir_module_to_xla_computation(
        mlir.module_to_string(module), use_tuple_args=False, return_tuple=True)

    if nparts <= xb.local_device_count():
        devices = xb.local_devices()[:nparts]
    else:
        assert nparts == xb.device_count()
        devices = xb.devices()
    device_assignment = np.array([[d for d in devices]])
    device_assignment = np.reshape(device_assignment, (-1, nparts))
    # device_assignment = None  # TODO(skye): replace with default device assignment?

    compiled = dispatch.backend_compile(
        xb.get_backend(), built,
        xb.get_compile_options(nrep, nparts, device_assignment))

    input_specs = [
        pxla.partitioned_sharding_spec(local_nparts, parts, aval)
        for parts, aval in zip(local_in_parts, abstract_args)
    ]
    input_indices = [
        pxla.spec_to_indices(aval.shape, spec) if spec is not None else None
        for aval, spec in zip(abstract_args, input_specs)
    ]

    handle_args = partial(pxla.shard_args, compiled.local_devices(),
                          input_indices)
    handle_outs = _avals_to_results_handler(
        nrep,
        local_nparts,  # type: ignore
        local_out_parts,
        local_out_avals)
    return partial(_execute_spatially_partitioned, compiled, handle_args,
                   handle_outs)
예제 #3
0
def _aval_to_result_handler(npart, parts, aval):
    spec = pxla.partitioned_sharding_spec(npart, parts, aval)
    indices = pxla.spec_to_indices(aval.shape, spec)
    return pxla.local_aval_to_result_handler(aval, spec, indices)
예제 #4
0
def _sharded_callable(
        fun: lu.WrappedFun, nparts: Optional[int],
        in_parts: Tuple[pxla.PartitionsOrReplicated, ...],
        out_parts_thunk: Callable[[], Tuple[pxla.PartitionsOrReplicated, ...]],
        local_in_parts: Optional[Tuple[pxla.PartitionsOrReplicated, ...]],
        local_out_parts_thunk: Callable[[], Optional[Tuple[
            pxla.PartitionsOrReplicated,
            ...]]], local_nparts: Optional[int], name: str, *abstract_args):
    nrep = 1

    if local_in_parts is None:
        local_in_parts = in_parts

    global_abstract_args = [
        pxla.get_global_aval(arg, parts,
                             lparts) for arg, parts, lparts in safe_zip(
                                 abstract_args, in_parts, local_in_parts)
    ]

    if logging.vlog_is_on(2):
        logging.vlog(2, "abstract_args: %s", abstract_args)
        logging.vlog(2, "global_abstract_args: %s", global_abstract_args)
        logging.vlog(2, "in_parts: %s", in_parts)
        logging.vlog(2, "local_in_parts: %s", local_in_parts)

    jaxpr, global_out_avals, consts = pe.trace_to_jaxpr_final(
        fun, global_abstract_args)

    platform = xb.get_backend().platform
    if platform not in ["tpu", "gpu"]:
        # TODO(skye): fall back to regular jit?
        raise ValueError(f"sharded_jit not supported for {platform}")

    nparts = pxla.reconcile_num_partitions(jaxpr, nparts)
    assert nparts is not None
    if nparts > xb.device_count():
        raise ValueError(
            f"sharded_jit computation requires {nparts} devices, "
            f"but only {xb.device_count()} devices are available.")
    if xb.local_device_count() < nparts < xb.device_count():
        raise NotImplementedError(
            f"sharded_jit across multiple hosts must use all available devices. "
            f"Got {nparts} out of {xb.device_count()} requested devices "
            f"(local device count: {xb.local_device_count()})")

    if local_nparts is None:
        if nparts > xb.local_device_count():
            raise ValueError(
                "Specify 'local_nparts' when using cross-process sharded_jit "
                "and all inputs and outputs are replicated.")
        else:
            local_nparts = nparts
    if local_nparts > xb.local_device_count():
        raise ValueError(
            f"sharded_jit computation requires {local_nparts} local devices, "
            f"but only {xb.local_device_count()} local devices are available.")

    if logging.vlog_is_on(2):
        logging.vlog(2, "nparts: %d  local_nparts: %d", nparts, local_nparts)

    out_parts = out_parts_thunk()

    local_out_parts = local_out_parts_thunk()
    if local_out_parts is None:
        local_out_parts = out_parts

    if logging.vlog_is_on(2):
        logging.vlog(2, "out_parts: %s", out_parts)
        logging.vlog(2, "local_out_parts: %s", local_out_parts)

    local_out_avals = [
        pxla.get_local_aval(out, parts,
                            lparts) for out, parts, lparts in safe_zip(
                                global_out_avals, out_parts, local_out_parts)
    ]

    log_priority = logging.WARNING if config.jax_log_compiles else logging.DEBUG
    logging.log(log_priority, "Compiling %s for %d devices with args %s.",
                fun.__name__, nparts, global_abstract_args)

    c = xc.XlaBuilder("spjit_{}".format(fun.__name__))
    xla_consts = _map(partial(xla.pyval_to_ir_constant, c), consts)
    xla_args = _xla_sharded_args(c, global_abstract_args, in_parts)
    axis_env = xla.AxisEnv(nrep, (), ())
    ctx = xla.TranslationContext(
        c, platform, axis_env,
        extend_name_stack(wrap_name(name, "sharded_jit")))
    out_nodes = xla.jaxpr_subcomp(ctx, jaxpr, xla_consts, *xla_args)
    out_tuple = xla.with_sharding(c, out_parts, xops.Tuple, c, out_nodes)
    built = c.Build(out_tuple)

    if nparts <= xb.local_device_count():
        devices = xb.local_devices()[:nparts]
    else:
        assert nparts == xb.device_count()
        devices = xb.devices()
    device_assignment = np.array([[d.id for d in devices]])
    device_assignment = np.reshape(device_assignment, (-1, nparts))
    # device_assignment = None  # TODO(skye): replace with default device assignment?

    compiled = dispatch.backend_compile(
        xb.get_backend(), built,
        xb.get_compile_options(nrep, nparts, device_assignment))

    input_specs = [
        pxla.partitioned_sharding_spec(local_nparts, parts, aval)
        for parts, aval in zip(local_in_parts, abstract_args)
    ]
    input_indices = [
        pxla.spec_to_indices(aval.shape, spec) if spec is not None else None
        for aval, spec in zip(abstract_args, input_specs)
    ]

    handle_args = partial(pxla.shard_args, compiled.local_devices(),
                          input_indices)
    handle_outs = _avals_to_results_handler(
        nrep,
        local_nparts,  # type: ignore
        local_out_parts,
        local_out_avals)
    return partial(_execute_spatially_partitioned, compiled, handle_args,
                   handle_outs)