예제 #1
0
class LevenbergMarquardtBR(Optimizer):
    """
    Levenberg-Marquardt optimizer with Bayesian regularization.
    """
    params: LevenbergMarquardtParams = LevenbergMarquardtParams()
    alpha: Float = np.float64(0.0)
    max_iters: Int = 500
    update: Callable = lambda a, b, c, t: t
예제 #2
0
def blackman_kernel(dims, M):
    n = M - 2
    apply = jax.vmap(lambda ns: blackman(M, norm(np.float64(ns)) / 2))
    inds = np.stack(
        np.meshgrid(*(np.arange(1 - n, n, 2) for _ in range(dims))),
        axis = -1
    )
    kernel = apply(inds.reshape(-1, dims))
    return (kernel / kernel.sum()).reshape(*(n for _ in range(dims)))
예제 #3
0
 def initialize(params, x, y):
     e = error(params, x, y)
     mu = optimizer.params.mu_0
     gamma = np.float64(params.size)
     beta = (x.size / m)**2 * (x.size - gamma) / sum_squares(e)
     beta = np.where(beta < 0, 1.0, beta)
     alpha = gamma / sum_squares(params)
     return LevenbergMarquardtBRState((x, y), params, e, np.inf, mu,
                                      alpha / beta)
예제 #4
0
파일: batching_test.py 프로젝트: syyunn/jax
        def f(key):
            def body_fn(uk):
                key = uk[1]
                u = random.uniform(key, (), dtype=np.float64)
                key, _ = random.split(key)
                return u, key

            u, _ = lax.while_loop(lambda uk: uk[0] > 0.5, body_fn,
                                  (np.float64(1.), key))
            return u
예제 #5
0
  def test_while_loop(self, jit):
    @partial(_maybe_jit, jit)
    def count_to(N):
      return lax.while_loop(lambda x: x < N, lambda x: x + 1.0, 0.0)

    with enable_x64():
      self.assertArraysEqual(count_to(10), jnp.float64(10), check_dtypes=True)

    with disable_x64():
      self.assertArraysEqual(count_to(10), jnp.float32(10), check_dtypes=True)
예제 #6
0
  def test_while_loop(self, jit):
    if jit == "cpp" and not config.omnistaging_enabled:
      self.skipTest("cpp_jit requires omnistaging")
    @partial(_maybe_jit, jit)
    def count_to(N):
      return lax.while_loop(lambda x: x < N, lambda x: x + 1.0, 0.0)

    with enable_x64():
      self.assertArraysEqual(count_to(10), jnp.float64(10), check_dtypes=True)

    with disable_x64():
      self.assertArraysEqual(count_to(10), jnp.float32(10), check_dtypes=True)
예제 #7
0
    def __init__(self, *, sigma, period, Q0, dQ, f):
        self.sigma = np.float64(sigma)
        self.period = np.float64(period)
        self.Q0 = np.float64(Q0)
        self.dQ = np.float64(dQ)
        self.f = np.float64(f)

        self.amp = self.sigma**2 / (1 + self.f)

        # One term with a period of period
        Q1 = 0.5 + self.Q0 + self.dQ
        w1 = 4 * np.pi * Q1 / (self.period * np.sqrt(4 * Q1**2 - 1))
        S1 = self.amp / (w1 * Q1)

        # Another term at half the period
        Q2 = 0.5 + self.Q0
        w2 = 8 * np.pi * Q2 / (self.period * np.sqrt(4 * Q2**2 - 1))
        S2 = self.f * self.amp / (w2 * Q2)

        super().__init__(
            UnderdampedSHOTerm(S0=S1, w0=w1, Q=Q1),
            UnderdampedSHOTerm(S0=S2, w0=w2, Q=Q2),
        )
예제 #8
0
파일: utils.py 프로젝트: harrispopgen/mushi
def C(n: int) -> np.ndarray:
    r"""The combinatorial matrix :math:`\mathbf C` defined in the paper's
    appendix.

    Args:
        n: the number of sampled haplotypes :math:`n`

    Returns:
        :math:`(n-1)\times(n-1)` matrix

    """
    W1 = np.zeros((n - 1, n - 1))
    W2 = np.zeros((n - 1, n - 1))
    b = np.arange(1, n - 1 + 1)
    # j = 2
    W1 = W1.at[:, 0].set(6 / (n + 1))
    W2 = W2.at[:, 0].set(0)
    # j = 3
    W1 = W1.at[:, 1].set(10 * (5 * n - 6 * b - 4) / (n + 2) / (n + 1))
    W2 = W2.at[:, 1].set((20 * (n - 2)) / (n + 1) / (n + 2))
    for col in range(n - 3):
        # this cast is crucial for floating point precision
        j = np.float64(col + 2)
        # procedurally generated by Zeilberger's algorithm in Mathematica
        W1 = W1.at[:, col + 2].set(-(
            (-((-1 + j) * (1 + j)**2 * (3 + 2 * j) * (j - n) *
               (4 + 2 * j - 2 * b * j + j**2 - b * j**2 + 4 * n + 2 * j * n +
                j**2 * n) * W1[:, col]) - (-1 + 2 * j) * (3 + 2 * j) *
             (-4 * j - 12 * b * j - 4 * b**2 * j - 6 * j**2 - 12 * b * j**2 -
              2 * b**2 * j**2 - 4 * j**3 + 4 * b**2 * j**3 - 2 * j**4 +
              2 * b**2 * j**4 + 4 * n + 2 * j * n - 6 * b * j * n + j**2 * n -
              9 * b * j**2 * n - 2 * j**3 * n - 6 * b * j**3 * n - j**4 * n -
              3 * b * j**4 * n + 4 * n**2 + 6 * j * n**2 + 7 * j**2 * n**2 +
              2 * j**3 * n**2 + j**4 * n**2) * W1[:, col + 1]) /
            (j**2 * (2 + j) * (-1 + 2 * j) * (1 + j + n) *
             (3 + b + j**2 - b * j**2 + 3 * n + j**2 * n))))  # noqa: E501
        W2 = W2.at[:, col + 2].set(
            ((-1 + j) * (1 + j) * (2 + j) * (3 + 2 * j) * (j - n) *
             (1 + j - n) * (1 + j + n) * W2[:, col] + (-1 + 2 * j) *
             (3 + 2 * j) * (1 + j - n) * (j + n) *
             (2 - j - 2 * b * j - j**2 - 2 * b * j**2 + 2 * n + j * n +
              j**2 * n) * W2[:, col + 1]) / ((-1 + j) * j * (2 + j) *
                                             (-1 + 2 * j) * (j - n) * (j + n) *
                                             (1 + j + n)))  # noqa: E501

    return W1 - W2
예제 #9
0
    def testIssue758(self):
        # code from https://github.com/google/jax/issues/758
        # this is more of a scan + jacfwd/jacrev test, but it lives here to use the
        # optimizers.py code

        def harmonic_bond(conf, params):
            return np.sum(conf * params)

        opt_init, opt_update, get_params = optimizers.sgd(5e-2)

        x0 = onp.array([0.5], dtype=onp.float64)
        params = onp.array([0.3], dtype=onp.float64)

        def minimize_structure(test_params):
            energy_fn = functools.partial(harmonic_bond, params=test_params)
            grad_fn = grad(energy_fn, argnums=(0, ))
            opt_state = opt_init(x0)

            def apply_carry(carry, _):
                i, x = carry
                g = grad_fn(get_params(x))[0]
                new_state = opt_update(i, g, x)
                new_carry = (i + 1, new_state)
                return new_carry, _

            carry_final, _ = lax.scan(apply_carry, (0, opt_state),
                                      np.zeros((75, 0)))
            trip, opt_final = carry_final
            assert trip == 75
            return opt_final

        initial_params = np.float64(0.5)
        minimize_structure(initial_params)

        def loss(test_params):
            opt_final = minimize_structure(test_params)
            return 1.0 - get_params(opt_final)[0]

        loss_opt_init, loss_opt_update, loss_get_params = optimizers.sgd(5e-2)

        J1 = jacrev(loss, argnums=(0, ))(initial_params)
        J2 = jacfwd(loss, argnums=(0, ))(initial_params)
        self.assertAllClose(J1, J2, check_dtypes=True, rtol=1e-6)
예제 #10
0
def EXP(w_raw):
    """
    Estimate free energy difference using exponential averaging

    Parameters
    ----------
    w : np.ndarray, float, (N)
        work for N frames

    Returns
    ------
    deltaF : scalar, float
        free energy difference

    """
    w = []
    for ww in w_raw:
        if ww is not None:
            w.append(ww)
    w = jnp.array(w)
    T = jnp.float64(jnp.size(w))
    deltaF = -(logsumexp(-w) - jnp.log(T))
    return deltaF
예제 #11
0
 def __init__(self, *, sigma, rho, eps=0.01):
     self.sigma = np.float64(sigma)
     self.rho = np.float64(rho)
     self.eps = np.float64(eps)
예제 #12
0
Narray = [10]

prec = 1E-4

Dinit = 8

for N in Narray:
    print('Length of the chain = {N}\n'.format(N=N))
    configarray = constructconfigarray(Dinit)
    for config in configarray:
        numofitarray = []
        minarray = []
        precisionarray = []
        timearray = []
        bondarray = []

        t1 = time.time()
        test_finite_DMRG_init(N, config, Dinit)
        print("{x} minutes".format(
            x=jnp.around(float(time.time() - t1) / 60, decimals=2)))
        print("Bond array: {x}".format(x=bondarray))
        print("Minimum array: {x}".format(x=jnp.float64(minarray)))
        print("Precision array (%): {x}".format(x=jnp.float(precisionarray)))
        print("Time array (minutes): {x}".format(x=jnp.float(timearray)))
        print("Number of iterations (at every bond): {x}".format(
            x=jnp.int(numofitarray)))
        print(
            "*********************************************************************************\n"
        )
예제 #13
0
 def __init__(self, term, delta):
     self.term = term
     self.delta = np.float64(delta)
예제 #14
0
 def __init__(self, *, a, c):
     self.a = np.float64(a)
     self.c = np.float64(c)
예제 #15
0
    fig.subplots_adjust(left=0.06,
                        bottom=0.08,
                        right=0.95,
                        top=0.95,
                        wspace=0.07,
                        hspace=0.25)
    #plt.show()
    #plt.savefig('test.pdf')

    #print(g2)
    # save figures
    fig_save = file_save_plt()
    if fig_save is None:
        None
    else:
        with PdfPages(fig_save) as pdf:
            pdf.savefig()

    the_fits.to_csv(file_save(), sep='\t', index=False)
    the_error.to_csv(file_save_err(), sep='\t', index=False)
    # Saving Stark Data\
    P = np.float64(the_fits['Peak Position'])
    E = np.float64(the_error['Peak Position err'])
    stark_data = '%s\t%.6f\t%.6f' % (volt, P, E)
    file_name = "Stark_%s_%s_%s.txt" % (sel2, sel, sel3)
    fn = open(file_name, 'a+')
    fn.write(stark_data + '\n')
    fn.close()

exit()
예제 #16
0
 def __init__(self, *, a, b, c, d):
     self.a = np.float64(a)
     self.b = np.float64(b)
     self.c = np.float64(c)
     self.d = np.float64(d)
예제 #17
0
 def __init__(self, *, eps=1e-5, **kwargs):
     self.eps = np.float64(eps)