예제 #1
0
파일: xcomm.py 프로젝트: Dean2311/commplax
def measure_cd(x, sr, start=-0.25, end=0.25, bins=2000, wavlen=1550e-9):
    '''
    References:
        Zhou, H., Li, B., Tang, et. al, 2016. Fractional fourier transformation-based
        blind chromatic dispersion estimation for coherent optical communications.
        Journal of Lightwave Technology, 34(10), pp.2371-2380.
    '''
    c = 299792458.
    p = jnp.linspace(start, end, bins)
    N = x.shape[0]
    K = p.shape[0]

    L = jnp.zeros(K, dtype=jnp.float32)

    def f(_, pi):
        return None, jnp.sum(
            jnp.abs(xop.frft(jnp.abs(xop.frft(x, pi))**2, -1))**2)

    # Use `scan` instead of `vmap` here to avoid potential large memory allocation.
    # Despite the speed of `scan` scales surprisingly well to large bins,
    # the speed has a lowerbound e.g 600ms at bins=1, possiblely related to the blind
    # migration of `frft` from Github :) (could frft be jitted in theory?).
    # TODO review `frft`
    _, L = xop.scan(f, None, p)

    B2z = jnp.tan(jnp.pi / 2 -
                  (p - 1) / 2 * jnp.pi) / (sr * 2 * jnp.pi / N * sr)
    Dz_set = -B2z / wavlen**2 * 2 * jnp.pi * c  # the swept set of CD metrics
    Dz_hat = Dz_set[jnp.argmin(L)]  # estimated accumulated CD

    return Dz_hat, L, Dz_set
예제 #2
0
 def _rvs(self, a, b):
     # We use inverse transform method:
     # z ~ ppf(U), where U ~ Uniform(cdf(a), cdf(b)).
     #                     ~ Uniform(arctan(a), arctan(b)) / pi + 1/2
     u = random.uniform(self._random_state, shape=self._size,
                        minval=np.arctan(a), maxval=np.arctan(b))
     return np.tan(u)
예제 #3
0
 def f(c, a):
   assert a.shape == (3,)
   assert c.shape == (4,)
   b = np.cos(np.sum(np.sin(a)) + np.sum(np.cos(c)) + np.sum(np.tan(d)))
   c = np.sin(c * b)
   assert b.shape == ()
   return c, b
예제 #4
0
 def sample(self, key, sample_shape=()):
     # We use inverse transform method:
     # z ~ inv_cdf(U), where U ~ Uniform(cdf(low), cdf(high)).
     #                         ~ Uniform(arctan(low), arctan(high)) / pi + 1/2
     size = sample_shape + self.batch_shape
     minval = -np.arctan(self.base_loc)
     maxval = np.pi / 2
     u = minval + random.uniform(key, shape=size) * (maxval - minval)
     return self.base_loc + np.tan(u)
예제 #5
0
def tick_buffer(carry, X):
    params, state = carry
    K = jnp.tan(jnp.pi * params["cutoff"])
    norm = 1.0 / (1.0 + K / params["resonance"] + K * K)
    state["a0"] = K * K * norm
    state["a1"] = 2.0 * state["a0"]
    state["a2"] = state["a0"]
    state["b1"] = 2.0 * (K * K - 1) * norm
    state["b2"] = (1.0 - K / params["resonance"] + K * K) * norm
    return lax.scan(tick, carry, X)
def inverse_bearings(observation, s1, s2):
    """
    Inverse the bearings observation to the location as if there was no noise,
    This is only used to provide an initial point for the linearization of the IEKS and ICKS.

    Parameters
    ----------
    observation: (2) array
        The bearings observation
    s1: (2) array
        The first sensor position
    s2: (2) array
        The second sensor position

    Returns
    -------
    out: (2) array
        The inversed position of the state
    """
    tan_theta = jnp.tan(observation)
    A = jnp.array([[tan_theta[0], -1], [tan_theta[1], -1]])
    b = jnp.array([s1[0] * tan_theta[0] - s1[1], s2[0] * tan_theta[1] - s2[1]])
    return jnp.linalg.solve(A, b)
예제 #7
0
 def _ppf(self, q):
     return jnp.tan(jnp.pi * q - jnp.pi / 2.0)
예제 #8
0
 def _ppf(self, q):
     return jnp.tan(jnp.pi / 2 * q)
예제 #9
0
파일: Problem_4.py 프로젝트: leakec/tfc
# Create TFC class:
myTfc = utfc(n, nC, m, x0=th0, xf=thf)
th = myTfc.x
H = myTfc.H

# Create constrained expression:
g = lambda th, xi: np.dot(H(th), xi)
r = lambda th,xi: g(th,xi)+\
                  (th-thf)/(th0-thf)*(r0-g(th0*np.ones_like(th),xi))+\
                  (th-th0)/(thf-th0)*(rf-g(thf*np.ones_like(th),xi))

# Create loss function:
dr = egrad(r)
d2r = egrad(dr)
L = lambda xi: -r(th,xi)**2*(dr(th,xi)*np.tan(th)+2.*d2r(th,xi))+\
               -np.tan(th)*dr(th,xi)**3+3.*r(th,xi)*dr(th,xi)**2+r(th,xi)**3

# Solve the problem:
xi = np.zeros(H(th).shape[1])
xi, _, time = NLLS(xi, L, timer=True)

# Print out statistics:
print("Solution time: {0} seconds".format(time))

# Plot the solution and residual
p = MakePlot([r"$y$"], [r"$x$"])
p.ax[0].plot(r(th, xi) * np.sin(th), r(th, xi) * np.cos(th), "k")
p.ax[0].axis("equal")
p.ax[0].grid(True)
p.ax[0].invert_yaxis()
예제 #10
0
파일: generic.py 프로젝트: wesselb/lab
def tan(a: Numeric):
    return jnp.tan(a)
예제 #11
0
 def _rvs(self):
     # TODO: move this implementation upstream to jax.random.standard_cauchy
     # Another way is to generate X, Y ~ Normal(0, 1) and return X / Y
     u = random.uniform(self._random_state, shape=self._size)
     return np.tan(np.pi * (u - 0.5))
예제 #12
0
 def _ppf(self, q):
     return np.tan(np.pi / 2 * q)
예제 #13
0
def tan(x):
  if isinstance(x, JaxArray): x = x.value
  return JaxArray(jnp.tan(x))
예제 #14
0
파일: jax.py 프로젝트: bmorris3/kelp
def reflected_phase_curve_inhomogeneous(phases, omega_0, omega_prime, x1, x2,
                                        A_g, a_rp):
    """
    Reflected light phase curve for an inhomogeneous sphere by
    Heng, Morris & Kitzmann (2021), with inspiration from Hu et al. (2015).

    Parameters
    ----------
    phases : `~np.ndarray`
        Orbital phases of each observation defined on (0, 1)
    omega_0 : tensor-like
        Single-scattering albedo of the less reflective region.
        Defined on (0, 1).
    omega_prime : tensor-like
        Additional single-scattering albedo of the more reflective region,
        such that the single-scattering albedo of the reflective region is
        ``omega_0 + omega_prime``. Defined on (0, ``1-omega_0``).
    x1 : tensor-like
        Start longitude of the darker region [radians] on (-pi/2, pi/2)
    x2 : tensor-like
        Stop longitude of the darker region [radians] on (-pi/2, pi/2)
    a_rp : float, tensor-like
        Semimajor axis scaled by the planetary radius

    Returns
    -------
    flux_ratio_ppm : tensor-like
        Flux ratio between the reflected planetary flux and the stellar flux
        in units of ppm.
    g : tensor-like
        Scattering asymmetry factor on (-1, 1)
    q : tensor-like
        Integral phase function
    """

    g = _g_from_ag(A_g, omega_0, omega_prime, x1, x2)

    # Redefine alpha to be on (-pi, pi)
    alpha = (2 * np.pi * phases - np.pi).astype(floatX)
    abs_alpha = np.abs(alpha).astype(floatX)
    alpha_sort_order = np.argsort(alpha)
    sin_abs_sort_alpha = np.sin(abs_alpha[alpha_sort_order]).astype(floatX)
    sort_alpha = alpha[alpha_sort_order].astype(floatX)

    # Equation 34 for Henyey-Greestein
    P_star = (1 - g**2) / (1 + g**2 + 2 * g * jnp.cos(abs_alpha))**1.5
    # Equation 36
    P_0 = (1 - g) / (1 + g)**2

    Rho_S, Rho_S_0, Rho_L, Rho_C = rho(omega_0, P_0, P_star)

    Rho_S_prime, Rho_S_0_prime, Rho_L_prime, Rho_C_prime = rho(
        omega_prime, P_0, P_star)

    alpha_plus = jnp.sin(abs_alpha / 2) + jnp.cos(abs_alpha / 2)
    alpha_minus = jnp.sin(abs_alpha / 2) - jnp.cos(abs_alpha / 2)

    # Equation 11:
    Psi_0 = jnp.where((alpha_plus > -1) & (alpha_minus < 1),
                      jnp.log((1 + alpha_minus) * (alpha_plus - 1) /
                              (1 + alpha_plus) / (1 - alpha_minus)), 0)
    Psi_S = 1 - 0.5 * (jnp.cos(abs_alpha / 2) -
                       1.0 / jnp.cos(abs_alpha / 2)) * Psi_0
    Psi_L = (jnp.sin(abs_alpha) +
             (np.pi - abs_alpha) * jnp.cos(abs_alpha)) / np.pi
    Psi_C = (-1 + 5 / 3 * jnp.cos(abs_alpha / 2)**2 -
             0.5 * jnp.tan(abs_alpha / 2) * jnp.sin(abs_alpha / 2)**3 * Psi_0)

    # Table 1:
    condition_a = (-np.pi / 2 <= alpha - np.pi / 2)
    condition_0 = ((alpha - np.pi / 2 <= np.pi / 2) & (np.pi / 2 <= alpha + x1)
                   & (alpha + x1 <= alpha + x2))
    condition_1 = ((alpha - np.pi / 2 <= alpha + x1) &
                   (alpha + x1 <= np.pi / 2) & (np.pi / 2 <= alpha + x2))
    condition_2 = ((alpha - np.pi / 2 <= alpha + x1) &
                   (alpha + x1 <= alpha + x2) & (alpha + x2 <= np.pi / 2))

    condition_b = (alpha + np.pi / 2 <= np.pi / 2)
    condition_3 = ((alpha + x1 <= alpha + x2) & (alpha + x2 <= -np.pi / 2) &
                   (-np.pi / 2 <= alpha + np.pi / 2))
    condition_4 = ((alpha + x1 <= -np.pi / 2) & (-np.pi / 2 <= alpha + x2) &
                   (alpha + x2 <= alpha + np.pi / 2))
    condition_5 = ((-np.pi / 2 <= alpha + x1) & (alpha + x1 <= alpha + x2) &
                   (alpha + x2 <= alpha + np.pi / 2))

    integration_angles = [
        [alpha - np.pi / 2, np.pi / 2], [alpha - np.pi / 2, alpha + x1],
        [alpha - np.pi / 2, alpha + x1, alpha + x2, np.pi / 2],
        [-np.pi / 2, alpha + np.pi / 2], [alpha + x2, alpha + np.pi / 2],
        [-np.pi / 2, alpha + x1, alpha + x2, alpha + np.pi / 2]
    ]

    conditions = [
        condition_a & condition_0,
        condition_a & condition_1,
        condition_a & condition_2,
        condition_b & condition_3,
        condition_b & condition_4,
        condition_b & condition_5,
    ]

    Psi_S_prime = 0
    Psi_L_prime = 0
    Psi_C_prime = 0

    for condition_i, angle_i in zip(conditions, integration_angles):
        for i, phi_i in enumerate(angle_i):
            sign = (-1)**(i + 1)
            I_phi_S, I_phi_L, I_phi_C = I(alpha, phi_i)
            Psi_S_prime += jnp.where(condition_i, sign * I_phi_S, 0)
            Psi_L_prime += jnp.where(condition_i, sign * I_phi_L, 0)
            Psi_C_prime += jnp.where(condition_i, sign * I_phi_C, 0)

    # Compute everything for alpha=0
    angles_alpha0 = [-np.pi / 2, x1, x2, np.pi / 2]
    Psi_S_prime_alpha0 = 0
    Psi_L_prime_alpha0 = 0
    Psi_C_prime_alpha0 = 0
    for i, phi_i in enumerate(angles_alpha0):
        sign = (-1)**(i + 1)
        I_phi_S_alpha0, I_phi_L_alpha0, I_phi_C_alpha0 = I(0, phi_i)

        Psi_S_prime_alpha0 += sign * I_phi_S_alpha0
        Psi_L_prime_alpha0 += sign * I_phi_L_alpha0
        Psi_C_prime_alpha0 += sign * I_phi_C_alpha0

    # Equation 37
    F_S = np.pi / 16 * (omega_0 * Rho_S * Psi_S +
                        omega_prime * Rho_S_prime * Psi_S_prime)
    F_L = np.pi / 12 * (omega_0 * Rho_L * Psi_L +
                        omega_prime * Rho_L_prime * Psi_L_prime)
    F_C = 3 * np.pi / 64 * (omega_0 * Rho_C * Psi_C +
                            omega_prime * Rho_C_prime * Psi_C_prime)

    sobolev_fluxes = F_S + F_L + F_C
    F_max = jnp.max(sobolev_fluxes)

    Psi = sobolev_fluxes / F_max

    flux_ratio_ppm = 1e6 * a_rp**-2 * Psi * A_g

    q = _integral_phase_function(Psi, sin_abs_sort_alpha, sort_alpha,
                                 alpha_sort_order)

    # F_0 = F_S_alpha0 + F_L_alpha0 + F_C_alpha0

    return flux_ratio_ppm, g, q
예제 #15
0
파일: jax.py 프로젝트: bmorris3/kelp
def reflected_phase_curve(phases, omega, g, a_rp):
    """
    Reflected light phase curve for a homogeneous sphere by
    Heng, Morris & Kitzmann (2021).

    Parameters
    ----------
    phases : `~np.ndarray`
        Orbital phases of each observation defined on (0, 1)
    omega : tensor-like
        Single-scattering albedo as defined in
    g : tensor-like
        Scattering asymmetry factor, ranges from (-1, 1).
    a_rp : float, tensor-like
        Semimajor axis scaled by the planetary radius

    Returns
    -------
    flux_ratio_ppm : tensor-like
        Flux ratio between the reflected planetary flux and the stellar flux in
        units of ppm.
    A_g : tensor-like
        Geometric albedo derived for the planet given {omega, g}.
    q : tensor-like
        Integral phase function
    """
    # Convert orbital phase on (0, 1) to "alpha" on (0, np.pi)
    alpha = jnp.asarray(2 * np.pi * phases - np.pi)
    abs_alpha = jnp.abs(alpha)
    alpha_sort_order = jnp.argsort(alpha)
    sin_abs_sort_alpha = jnp.sin(abs_alpha[alpha_sort_order])
    sort_alpha = alpha[alpha_sort_order]

    gamma = jnp.sqrt(1 - omega)
    eps = (1 - gamma) / (1 + gamma)

    # Equation 34 for Henyey-Greestein
    P_star = (1 - g**2) / (1 + g**2 + 2 * g * jnp.cos(alpha))**1.5
    # Equation 36
    P_0 = (1 - g) / (1 + g)**2

    # Equation 10:
    Rho_S = P_star - 1 + 0.25 * ((1 + eps) * (2 - eps))**2
    Rho_S_0 = P_0 - 1 + 0.25 * ((1 + eps) * (2 - eps))**2
    Rho_L = 0.5 * eps * (2 - eps) * (1 + eps)**2
    Rho_C = eps**2 * (1 + eps)**2

    alpha_plus = jnp.sin(abs_alpha / 2) + jnp.cos(abs_alpha / 2)
    alpha_minus = jnp.sin(abs_alpha / 2) - jnp.cos(abs_alpha / 2)

    # Equation 11:
    Psi_0 = jnp.where((alpha_plus > -1) & (alpha_minus < 1),
                      jnp.log((1 + alpha_minus) * (alpha_plus - 1) /
                              (1 + alpha_plus) / (1 - alpha_minus)), 0)

    Psi_S = 1 - 0.5 * (jnp.cos(abs_alpha / 2) -
                       1.0 / jnp.cos(abs_alpha / 2)) * Psi_0
    Psi_L = (jnp.sin(abs_alpha) +
             (np.pi - abs_alpha) * jnp.cos(abs_alpha)) / np.pi
    Psi_C = (-1 + 5 / 3 * jnp.cos(abs_alpha / 2)**2 -
             0.5 * jnp.tan(abs_alpha / 2) * jnp.sin(abs_alpha / 2)**3 * Psi_0)

    # Equation 8:
    A_g = omega / 8 * (P_0 - 1) + eps / 2 + eps**2 / 6 + eps**3 / 24

    # Equation 9:
    Psi = ((12 * Rho_S * Psi_S + 16 * Rho_L * Psi_L + 9 * Rho_C * Psi_C) /
           (12 * Rho_S_0 + 16 * Rho_L + 6 * Rho_C))

    flux_ratio_ppm = 1e6 * (a_rp**-2 * A_g * Psi)

    q = _integral_phase_function(Psi, sin_abs_sort_alpha, sort_alpha,
                                 alpha_sort_order)

    return flux_ratio_ppm, A_g, q
예제 #16
0
파일: tan.py 프로젝트: gglin001/onnx-jax
 def _tan(x):
     return jnp.tan(x)
예제 #17
0
def _logsnr_schedule_cosine(t, *, logsnr_min, logsnr_max):
    b = onp.arctan(onp.exp(-0.5 * logsnr_max))
    a = onp.arctan(onp.exp(-0.5 * logsnr_min)) - b
    return -2. * jnp.log(jnp.tan(a * t + b))
예제 #18
0
    def state_dynamics(state, control, *params):

        # sanity
        assert len(state.shape) == len(control.shape) == 1
        assert state.shape[-1] == Fossen.state_dim
        assert control.shape[-1] == Fossen.control_dim

        # constant parameters
        Nrr, Izz, Kt1, zb, Mqq, ycp, xb, zcp, Yvv, yg, Ixx, Kt0, Xuu, xg, Zww, W, m, B, zg, Kpp, Qt1, Qt0, Iyy, yb, xcp = params

        # extract state and control
        # phi, theta, psi = roll, pitch, yaw
        x, y, z, phi, theta, psi, u, v, w, p, q, r = state
        rpm0, rpm1, de, dr = control
        # rpm0, rpm1, de, dr = control*(Fossen.control_ub - Fossen.control_lb) - Fossen.control_lb

        # common subexpression elimination
        x0 = np.cos(psi)
        x1 = np.cos(theta)
        x2 = u * x1
        x3 = np.sin(phi)
        x4 = np.sin(psi)
        x5 = x3 * x4
        x6 = np.sin(theta)
        x7 = np.cos(phi)
        x8 = x0 * x7
        x9 = x4 * x7
        x10 = x0 * x3
        x11 = x1 * x3
        x12 = x1 * x7
        x13 = np.tan(theta)
        x14 = q * x3
        x15 = r * x7
        x16 = 1 / x1
        x17 = Yvv * abs(v)
        x18 = m * xg
        x19 = p * x18
        x20 = m * zg
        x21 = r * x20
        x22 = m * u
        x23 = m * yg
        x24 = r * x23
        x25 = np.sin(dr)
        x26 = Kt0 * rpm0
        x27 = Kt1 * rpm1
        x28 = m * w
        x29 = -x28
        x30 = p * x23
        x31 = -B + W
        x32 = x3**2
        x33 = x6**2
        x34 = x1**2
        x35 = x7**2
        x36 = 1 / (x32 * x33 + x32 * x34 + x33 * x35 + x34 * x35)
        x37 = x11 * x36
        x38 = -p * (x29 - x30) - q * (x19 + x21) - r * (
            x22 - x24) - v * x17 + x25 * (-x26 - x27) - x31 * x37
        x39 = m**2
        x40 = xg**4
        x41 = x39 * x40
        x42 = yg**2
        x43 = xg**2
        x44 = x39 * x43
        x45 = x42 * x44
        x46 = zg**2
        x47 = x44 * x46
        x48 = Iyy * Izz
        x49 = Ixx * x48
        x50 = Ixx * Izz
        x51 = m * x50
        x52 = m * x48
        x53 = -x42 * x52 - x43 * x51 + x49
        x54 = Ixx * Iyy
        x55 = m * x54
        x56 = -x43 * x55 - x46 * x52
        x57 = Ixx * x41 + Iyy * x45 + Izz * x47 + x53 + x56
        x58 = yg**4
        x59 = x39 * x58
        x60 = x42 * x46
        x61 = x39 * x60
        x62 = -x42 * x55 - x46 * x51
        x63 = Ixx * x45 + Iyy * x59 + Izz * x61 + x62
        x64 = zg**4
        x65 = x39 * x64
        x66 = Ixx * x47 + Iyy * x61 + Izz * x65
        x67 = 1 / (x57 + x63 + x66)
        x68 = x54 * yg
        x69 = xg**3
        x70 = Ixx * x69
        x71 = yg**3
        x72 = Iyy * m
        x73 = x71 * x72
        x74 = Izz * x46
        x75 = x23 * x74
        x76 = x67 * (x23 * x70 - x68 * xg + x73 * xg + x75 * xg)
        x77 = x50 * zg
        x78 = zg**3
        x79 = Izz * x78
        x80 = x20 * x42
        x81 = Iyy * x80
        x82 = x18 * x79 + x20 * x70 - x77 * xg + x81 * xg
        x83 = Zww * abs(w)
        x84 = m * v
        x85 = p * x20
        x86 = q * x23
        x87 = np.sin(de)
        x88 = np.cos(dr)
        x89 = x88 * (x26 + x27)
        x90 = -x22
        x91 = q * x20
        x92 = x12 * x36
        x93 = -p * (x84 - x85) - q * (x90 - x91) - r * (
            x19 + x86) - w * x83 - x31 * x92 + x87 * x89
        x94 = x67 * x93
        x95 = Xuu * abs(u)
        x96 = q * x18
        x97 = np.cos(de)
        x98 = -x84
        x99 = r * x18
        x100 = x6 / (x33 + x34)
        x101 = -p * (x21 + x86) - q * (x28 - x96) - r * (
            x98 - x99) - u * x95 + x100 * x31 + x89 * x97
        x102 = m**3
        x103 = Ixx * x102
        x104 = Iyy * x102
        x105 = Izz * x102
        x106 = x39 * x42
        x107 = x39 * x46
        x108 = x103 * x43
        x109 = 1 / (m * x49 + x103 * x40 + x104 * x42 * x43 + x104 * x58 +
                    x104 * x60 + x105 * x43 * x46 + x105 * x60 + x105 * x64 -
                    x106 * x48 - x106 * x54 - x107 * x48 - x107 * x50 +
                    x108 * x42 + x108 * x46 - x44 * x50 - x44 * x54)
        x110 = Ixx * x43
        x111 = x110 * x23
        x112 = Iyy * x23
        x113 = -x111 - x112 * x46 + x68 - x73
        x114 = p * q
        x115 = Qt0 * rpm0
        x116 = Qt1 * rpm1
        x117 = x88 * (x115 + x116)
        x118 = -x19
        x119 = -x86
        x120 = x67 * (B * (x100 * yb + x37 * xb) + Ixx * x114 - Iyy * x114 -
                      Nrr * r * abs(r) - W * (x100 * yg + x37 * xg) - u *
                      (x84 - x95 * ycp + x99) - v *
                      (x17 * xcp + x24 + x90) - w * (x118 + x119) + x117 * x87)
        x121 = Izz * m
        x122 = x121 * x78
        x123 = Izz * x80 + x110 * x20 + x122 - x77
        x124 = p * r
        x125 = -x21
        x126 = x67 * (B * (-x100 * zb - x92 * xb) - Ixx * x124 + Izz * x124 -
                      Mqq * q * abs(q) - W * (-x100 * zg - x92 * xg) - u *
                      (x29 + x95 * zcp + x96) - v * (x118 + x125) - w *
                      (x22 - x83 * xcp + x91) + x25 * (-x115 - x116))
        x127 = x23 * xg
        x128 = Izz * x127
        x129 = x128 * zg
        x130 = x112 * xg * zg
        x131 = x129 - x130
        x132 = q * r
        x133 = x67 * (B * (-x37 * zb + x92 * yb) + Iyy * x132 - Izz * x132 -
                      Kpp * p * abs(p) - W * (-x37 * zg + x92 * yg) - u *
                      (x119 + x125) - v * (-x17 * zcp + x28 + x30) - w *
                      (x83 * ycp + x85 + x98) + x117 * x97)
        x134 = x48 * zg
        x135 = Iyy * x20
        x136 = x111 * zg - x134 * yg + x135 * x71 + x23 * x79
        x137 = Ixx * zg
        x138 = x127 * x137
        x139 = -x129 + x138
        x140 = Ixx * m
        x141 = x140 * x69
        x142 = Ixx * x18
        x143 = x42 * x72
        x144 = x141 + x142 * x46 + x143 * xg - x54 * xg
        x145 = -Izz * x20 * x43 - x122 + x134 - x81
        x146 = x101 * x67
        x147 = x38 * x67
        x148 = x130 - x138
        x149 = -x141 - x142 * x42 - x18 * x74 + x50 * xg
        x150 = x112 * x43 - x48 * yg + x73 + x75
        x151 = x39 * xg
        x152 = x39 * x69
        x153 = -x135 * xg + x151 * x42 * zg + x151 * x78 + x152 * zg
        x154 = -x128 + x151 * x46 * yg + x151 * x71 + x152 * yg
        x155 = -x121 * x46 + x45
        x156 = -x143 + x47
        x157 = -x137 * x23 + x39 * x71 * zg + x39 * x78 * yg + x44 * yg * zg
        x158 = -x140 * x43 + x61

        # dxdt
        return np.array([
            v * (x10 * x6 - x9) + w * (x5 + x6 * x8) + x0 * x2,
            v * (x5 * x6 + x8) + w * (-x10 + x6 * x9) + x2 * x4,
            -u * x6 + v * x11 + w * x12, p + x13 * x14 + x13 * x15,
            q * x7 - r * x3, x14 * x16 + x15 * x16, x101 * x109 * x57 +
            x113 * x120 + x123 * x126 + x131 * x133 + x38 * x76 + x82 * x94,
            x101 * x76 + x109 * x38 * (x53 + x63) + x120 * x144 + x126 * x139 +
            x133 * x145 + x136 * x94, x109 * x93 * (x49 + x56 + x62 + x66) +
            x120 * x148 + x126 * x149 + x133 * x150 + x136 * x147 + x146 * x82,
            x120 * x153 + x126 * x154 + x131 * x146 + x133 *
            (-x121 * x43 + x155 + x156 + x41 - x43 * x72 + x48) + x145 * x147 +
            x150 * x94, x120 * x157 + x123 * x146 + x126 *
            (-x121 * x42 - x140 * x42 + x155 + x158 + x50 + x59) +
            x133 * x154 + x139 * x147 + x149 * x94, x113 * x146 + x120 *
            (-x140 * x46 + x156 + x158 - x46 * x72 + x54 + x65) + x126 * x157 +
            x133 * x153 + x144 * x147 + x148 * x94
        ])
예제 #19
0
 def _isf(self, q):
     return jnp.tan(jnp.pi / 2.0 - jnp.pi * q)
예제 #20
0
 def _isf(self, q):
     return np.tan(np.pi / 2.0 - np.pi * q)
예제 #21
0
def t1_invcdf(u):
    z = jnp.tan(jnp.pi * (u - 0.5))
    return z
예제 #22
0
 def f(c, a):
     a1, a2 = a
     c1, c2 = c
     b = np.sum(np.cos(a1)) * np.sum(np.tan(c2 * a2))
     c = c1 * np.sin(np.sum(a1 * a2)), c2 * np.cos(np.sum(a1))
     return c, b
예제 #23
0
def bezierParsec(x):
    xVals = np.array([0.0 for x in range(2 * len(uVals) + 2 * len(uValsBack))])
    yVals = np.array([0.0 for x in range(2 * len(uVals) + 2 * len(uValsBack))])
    uuVals = np.array(
        [0.0 for x in range(2 * len(uVals) + 2 * len(uValsBack))])
    #x = [rle, b8, xt, yt, b15, dzte, betate, b0, b2, xc, yc, gammale, b17, zte, alphate]
    rle = x[0]
    b8 = x[1]
    xt = x[2]
    yt = x[3]
    b15 = x[4]
    dzte = x[5]
    betate = x[6]
    b0 = x[7]
    b2 = x[8]
    xc = x[9]
    yc = x[10]
    gammale = x[11]
    b17 = x[12]
    zte = x[13]
    alphate = x[14]

    for i in range(2 * len(uVals) + 2 * len(uValsBack)):

        if i < len(uValsBack) or i > (
            (2 * len(uVals) + len(uValsBack)) - 1):  #trailing edge

            if i < len(uValsBack):
                u = 1 - uValsBack[i]
            else:
                u = uValsBack[(i - (2 * len(uVals) + len(uValsBack)))] + (
                    1.0 - uValsBack[-1])

            x0 = xt
            x1 = (7.0 * xt - 9.0 * b8**2 / (2.0 * rle)) / 4.0
            #x1 = (b15-xt)*.33 + xt
            x2 = 3.0 * xt - 15.0 * b8**2.0 / (4 * rle)
            #x2 = (b15-xt)*.66 + xt
            x3 = b15
            x4 = 1
            y0 = yt
            y1 = yt
            y2 = (yt + b8) / 2
            y3 = dzte + (1 - b15) * np.tan(betate)
            y4 = dzte

            xCoord = x0 * (1 - u)**4 + 4 * x1 * u * (1 - u)**3 + 6 * x2 * (
                u**2) * (1 - u)**2 + 4 * x3 * (u**3) * (1 - u) + x4 * u**4
            y_t = y0 * (1 - u)**4 + 4 * y1 * u * (1 - u)**3 + 6 * y2 * (
                u**2) * (1 - u)**2 + 4 * y3 * (u**3) * (1 - u) + y4 * u**4

        else:  #leading edge
            if i < (len(uVals) + len(uValsBack)):
                u = uVals[-(i - len(uValsBack)) - 1]
            else:
                u = uVals[i -
                          (len(uVals) + len(uValsBack))] + (1.0 - uVals[-1])

            if yt < (2.0 * rle * xt / 3.0)**0.5:
                b8bound = yt
            else:
                b8bound = (2.0 * rle * xt / 3.0)**0.5

            b8h = b8
            if b8h > b8bound:
                b8h = b8bound
            if b8h < 0.0:
                b8h = 0.0

            x0 = 0
            x1 = 0
            x2 = 3.0 * (b8h**2.0) / (2.0 * rle)
            x3 = xt
            y0 = 0
            y1 = b8h
            y2 = yt
            y3 = yt

            xCoord = x0 * (1 - u)**3 + 3 * x1 * u * (1 - u)**2 + 3 * x2 * (
                u**2) * (1 - u) + x3 * u**3
            y_t = y0 * (1 - u)**3 + 3 * y1 * u * (1 - u)**2 + 3 * y2 * (
                u**2) * (1 - u) + y3 * u**3

        if xCoord < xc:
            x0 = 0
            x1 = b0
            x2 = b2
            x3 = xc
            y0 = 0
            y1 = b0 * np.tan(gammale)
            y2 = yc
            y3 = yc

            #iterative search for u
            u = (xCoord) / (xc)
            for j in range(3):
                f_x = x0 * (1 - u)**3 + 3 * x1 * u * (1 - u)**2 + 3 * x2 * (
                    u**2) * (1 - u) + x3 * u**3 - xCoord
                fp_x = -3 * x0 * (1 -
                                  u)**2 + 3 * x1 * (1 - u)**2 - 6 * x1 * u * (
                                      1 - u) - 3 * x2 * u**2 + 6 * x2 * u * (
                                          1 - u) + 3 * x3 * u**2
                u = u - f_x / fp_x

            y_c = y0 * (1 - u)**3 + 3 * y1 * u * (1 - u)**2 + 3 * y2 * (
                u**2) * (1 - u) + y3 * u**3

        else:
            x0 = xc
            x1 = (3.0 * xc - yc / np.tan(gammale)) / 2.0
            x2 = (-8.0 * yc / np.tan(gammale) + 13.0 * xc) / 6.0
            # x1 = .7 #used for debugging
            # x2 = .9
            x3 = b17
            x4 = 1.0
            y0 = yc
            y1 = yc
            y2 = 5.0 * yc / 6.0
            y3 = zte - (1 - b17) * np.tan(alphate)
            y4 = zte

            #iterative search for u
            u = (xCoord - xc) / (1.0 - xc)
            for j in range(3):
                f_x = x0 * (1 - u)**4 + 4 * x1 * u * (1 - u)**3 + 6 * x2 * (
                    u**2) * (1 - u)**2 + 4 * x3 * (u**3) * (
                        1 - u) + x4 * u**4 - xCoord
                fp_x = -4 * x0 * (1 - u)**3 + 4 * x1 * (
                    1 - u)**3 - 12 * x1 * u * (1 - u)**2 + 12 * x2 * u * (
                        1 - u)**2 - 12 * x2 * (1 - u) * u**2 + 12 * x3 * (
                            1 - u) * u**2 - 4 * x3 * u**3 + 4 * x4 * u**3

                if u < 0.25:
                    u = u - 1.0 * f_x / fp_x
                else:
                    u = u - 1.0 * f_x / fp_x

            y_c = y0 * (1 - u)**4 + 4 * y1 * u * (1 - u)**3 + 6 * y2 * (
                u**2) * (1 - u)**2 + 4 * y3 * (u**3) * (1 - u) + y4 * u**4

        if i < (len(uVals) + len(uValsBack)):
            yVals = jo.index_update(yVals, i, y_c - y_t)
        else:
            yVals = jo.index_update(yVals, i, y_c + y_t)

        xVals = jo.index_update(xVals, i, xCoord)

        # uuVals = jo.index_update(uuVals, i, u) #used for debugging

    return xVals, yVals
예제 #24
0
def loader(data_dir, filter_chain_options, device):
    """
    Loads images from disk into a big numpy array, which will
    later be pmapped onto all devices.
    """
    splits = [entry for entry in data_dir.iterdir() if entry.is_dir()]

    metadata = {
        split: json.load(
            StringIO((data_dir / f"transforms_{split.name}.json").read_text())
        )
        for split in splits
    }

    vmap_filter_chain = vmap(
        lambda imgs: jit(filter_chain, static_argnums=(1,), device=device)(
            imgs, filter_chain_options
        ),
    )

    frame_iterator = lambda f, mdata: jnp.stack(
        [
            f(frame)
            for idx, frame in enumerate(mdata["frames"])
            if idx % filter_chain_options.skiptest == 0
        ],
        axis=0,
    )

    images = {
        split.name: vmap_filter_chain(
            jnp.array(
                frame_iterator(
                    lambda frame: imageio.imread(
                        data_dir / f"{frame['file_path']}.png"
                    ),
                    mdata,
                )
            )
        )
        for split, mdata in metadata.items()
    }

    poses = {
        split.name: frame_iterator(
            lambda frame: jnp.array(frame["transform_matrix"]), mdata
        )
        for split, mdata in metadata.items()
    }

    intrinsics = {
        split.name: Intrinsics(
            focal_length=0.5
            * images[split.name].shape[2]
            / jnp.tan(0.5 * float(mdata["camera_angle_x"])),
            width=images[split.name].shape[2],
            height=images[split.name].shape[1],
        )
        for split, mdata in metadata.items()
    }

    return images, poses, intrinsics
예제 #25
0
 def _ppf(self, q):
     return np.tan(np.pi * q - np.pi / 2.0)
예제 #26
0
softsign = utils.copy_docstring(
    tf.math.softsign,
    lambda features, name=None: np.divide(features, (np.abs(features) + 1)))

sqrt = utils.copy_docstring(tf.math.sqrt, lambda x, name=None: np.sqrt(x))

square = utils.copy_docstring(tf.math.square,
                              lambda x, name=None: np.square(x))

squared_difference = utils.copy_docstring(
    tf.math.squared_difference, lambda x, y, name=None: np.square(x - y))

subtract = utils.copy_docstring(tf.math.subtract,
                                lambda x, y, name=None: np.subtract(x, y))

tan = utils.copy_docstring(tf.math.tan, lambda x, name=None: np.tan(x))

tanh = utils.copy_docstring(tf.math.tanh, lambda x, name=None: np.tanh(x))

top_k = utils.copy_docstring(tf.math.top_k, _top_k)

truediv = utils.copy_docstring(tf.math.truediv,
                               lambda x, y, name=None: np.true_divide(x, y))

# unsorted_segment_max = utils.copy_docstring(
#     tf.math.unsorted_segment_max,
#     lambda data, segment_ids, num_segments, name=None: (
#         np.unsorted_segment_max))

# unsorted_segment_mean = utils.copy_docstring(
#     tf.math.unsorted_segment_mean,
예제 #27
0
 def g(z):
   return 3. * np.exp(np.sin(x).sum() * np.cos(y) * np.tan(z))
예제 #28
0
def __lsp(A, phi, theta):
    return (A * jnp.exp(theta * jnp.tan(jnp.deg2rad(phi))) * jnp.stack(
        (jnp.cos(theta), jnp.sin(theta)))).T
예제 #29
0
def correct_logsp_params(A, phi, q, psi, dpsi, theta):
    Ap = jnp.exp(-dpsi * jnp.tan(jnp.deg2rad(phi)))
    return A * Ap, phi, q, psi, theta + dpsi
예제 #30
0
def standard_cauchy_icdf(u):
    """Inverse cumulative distribution function of standard Cauchy."""
    return np.tan(np.pi * (u - 0.5))