예제 #1
0
 def test_debug_print_transpose_rule(self):
   def f(x):
     debug_print('should never be called: {}', x)
     return x
   with capture_stdout() as output:
     jax.linear_transpose(f, 1.)(1.)
     jax.effects_barrier()
   # `debug_print` should be dropped by `partial_eval` because of no
   # output data-dependence.
   self.assertEqual(output(), "")
예제 #2
0
 def mvt(v, f, params, samples, centered, w):
     (res, ) = jax.linear_transpose(
         lambda v_: qgt_onthefly_logic.mat_vec(v_, f, params, samples, 0.0,
                                               centered),
         v,
     )(w)
     return res
예제 #3
0
 def mvpT(A, y):
     assert y.ndim == 3
     input_image = types.SimpleNamespace(shape=(H, W, C), dtype=jnp.float32)
     mvpt = jax.linear_transpose(lambda x: mvp(A, x), input_image)
     out = mvpt(y)[0]
     assert out.ndim == 3
     return out
def test_allreduce_transpose():
    from mpi4jax import allreduce

    arr = jnp.ones((3, 2))
    _arr = arr.copy()

    (res,) = jax.linear_transpose(lambda x: allreduce(x, op=MPI.SUM)[0], arr)(_arr)
    assert jnp.array_equal(_arr, res)
예제 #5
0
파일: solves.py 프로젝트: xueeinstein/jax
def _transpose_one_output(linear_fun, primals):
    transpose_fun = jax.linear_transpose(linear_fun, primals)

    def transposed_fun(x):
        (y, ) = transpose_fun(x)
        return y

    return transposed_fun
예제 #6
0
def test_matvec_linear_transpose():
    w = v
    (actual, ) = jax.linear_transpose(
        lambda v_: mat_vec(v_, f, params, samples, 0.0), v)(w)
    # use that S is hermitian:
    # S^T = (O^H O)^T = O^T O* = (O^H O)* = S*
    # S^T w = S* w = (S w*)*
    expected = tree_conj(mat_vec(tree_conj(w), f, params, samples, 0.0))
    # (expected,) = jax.linear_transpose(lambda v_: reassemble_complex(S_real @ tree_toreal_flat(v_)), v)(v)
    assert tree_allclose(actual, expected)
def test_allreduce_transpose2():
    # test transposing twice
    from mpi4jax import allreduce

    arr = jnp.ones((3, 2))
    _arr = arr.copy()
    _arr2 = arr.copy()

    def lt(y):
        return jax.linear_transpose(lambda x: allreduce(x, op=MPI.SUM)[0], arr)(y)[0]

    (res,) = jax.linear_transpose(lt, _arr)(_arr2)
    expected, _ = allreduce(_arr2, op=MPI.SUM)
    assert jnp.array_equal(expected, res)
예제 #8
0
def mat_vec(jvp_fn, v, diag_shift):
    # Save linearisation work
    # TODO move to mat_vec_factory after jax v0.2.19
    vjp_fn = jax.linear_transpose(jvp_fn, v)

    w = jvp_fn(v)
    w = w * (1.0 / (w.size * mpi.n_nodes))
    w = subtract_mean(w)  # w/ MPI
    # Oᴴw = (wᴴO)ᴴ = (w* O)* since 1D arrays are not transposed
    # vjp_fn packages output into a length-1 tuple
    (res, ) = tree_conj(vjp_fn(w.conjugate()))
    res = jax.tree_map(lambda x: mpi.mpi_sum_jax(x)[0], res)

    return tree_axpy(diag_shift, v, res)  # res + diag_shift * v
예제 #9
0
    def get_ntk(x1, x2, *args):
      args = tuple(args)
      args1, args2 = args[:len(args) // 2], args[len(args) // 2 :]
      _kwargs1 = {k: v for k, v in zip(keys, args1)}
      _kwargs2 = {k: v for k, v in zip(keys, args2)}

      f1 = _get_f_params(f, x1, x_axis, fx_axis, kw_axes, **_kwargs1)
      f2 = f1 if utils.all_none(x2) else _get_f_params(
          f, x2, x_axis, fx_axis, kw_axes, **_kwargs2)

      def delta_vjp_jvp(delta):
        def delta_vjp(delta):
          return vjp(f2, params)[1](delta)
        return jvp(f1, (params,), delta_vjp(delta))[1]

      fx1, fx2 = eval_shape(f1, params), eval_shape(f2, params)
      eye = utils.std_basis(fx1)
      ntk = vmap(linear_transpose(delta_vjp_jvp, fx2))(eye)
      ntk = tree_map(lambda fx12: utils.unravel_array_into_pytree(fx1, 0, fx12),
                     ntk)
      ntk = _diagonal(ntk, fx1)
      return ntk
예제 #10
0
def reassemble_complex(x, fun=tree_toreal_flat, target=params):
    # target: a tree with the expected shape and types of the result
    (res,) = jax.linear_transpose(fun, target)(x)
    res = tree_conj(res)
    # fix the dtypes:
    return tree_cast(res, target)
예제 #11
0
 def lt(y):
     return jax.linear_transpose(lambda x: allreduce(x, op=MPI.SUM)[0],
                                 arr)(y)[0]
예제 #12
0
 def f(x):
     (res, ) = jax.linear_transpose(lambda x: allreduce(x, op=MPI.SUM)[0],
                                    arr)(x)
     return res
예제 #13
0
 def f(x):
     (res, ) = jax.linear_transpose(lt, _arr)(x)
     return res
예제 #14
0
def reassemble_complex(x, target, fun=tree_toreal_flat):
    # target: a tree with the expected shape and types of the result
    (res, ) = jax.linear_transpose(fun, target)(x)
    res = qgt_onthefly_logic.tree_conj(res)
    # fix the dtypes:
    return qgt_onthefly_logic.tree_cast(res, target)
예제 #15
0
 def mvt(v, w):
     (res,) = jax.linear_transpose(lambda v_: mv(v_, 0.0), v)(w)
     return res
예제 #16
0
 def func_transpose(x):
     return jax.linear_transpose(func, x)(x)[0]
 def fT(y):
     return jax.linear_transpose(f, x)(y)[0]
예제 #18
0
def _tree_reassemble_complex(x, target, fun=_tree_to_reim):
    (res,) = jax.linear_transpose(fun, target)(x)
    return nkjax.tree_conj(res)
예제 #19
0
파일: rans.py 프로젝트: j-towns/crayjax
def view_update(data, view_fun):
    item, view_transpose = view_fun(data), linear_transpose(view_fun, data)
    def update(new_item):
        diff, = view_transpose(tree_multimap(jnp.subtract, new_item, item))
        return tree_multimap(jnp.add, data, diff)
    return item, update