def subplot(ax, data, xlabel, ylabel, xlim=None, ylim=1.1, xcast=float, ycast=float, legend=None): columned_data = zip(*data) x, yy = columned_data[0], columned_data[1:] lines = [] for y, m in zip(yy, "o^x"): line, = ax.plot(x, y, "k:", marker=m, mec="k", mfc="w", ms=4) lines.append(line) if legend: assert len(lines) == len(legend) ax.legend(lines, legend, loc='best') ax.set_xlabel(xlabel) ax.set_ylabel(ylabel) if xlim: ax.set_xlim(0, xlim) if ylim: ax.set_ylim(0, ylim) set_ticklabels_helvetica(ax, xcast=xcast, ycast=ycast)
def multihistogram(args): """ %prog multihistogram *.histogram species Plot the histogram based on a set of K-mer hisotograms. The method is based on Star et al.'s method (Atlantic Cod genome paper). """ p = OptionParser(multihistogram.__doc__) p.add_option("--kmin", default=15, type="int", help="Minimum K-mer size, inclusive") p.add_option("--kmax", default=30, type="int", help="Maximum K-mer size, inclusive") p.add_option("--vmin", default=2, type="int", help="Minimum value, inclusive") p.add_option("--vmax", default=100, type="int", help="Maximum value, inclusive") opts, args, iopts = p.set_image_options(args, figsize="10x5", dpi=300) if len(args) < 1: sys.exit(not p.print_help()) histfiles = args[:-1] species = args[-1] fig = plt.figure(1, (iopts.w, iopts.h)) root = fig.add_axes([0, 0, 1, 1]) A = fig.add_axes([0.08, 0.12, 0.38, 0.76]) B = fig.add_axes([0.58, 0.12, 0.38, 0.76]) lines = [] legends = [] genomesizes = [] for histfile in histfiles: ks = KmerSpectrum(histfile) x, y = ks.get_xy(opts.vmin, opts.vmax) K = get_number(op.basename(histfile).split(".")[0].split("-")[-1]) if not opts.kmin <= K <= opts.kmax: continue (line, ) = A.plot(x, y, "-", lw=1) lines.append(line) legends.append("K = {0}".format(K)) ks.analyze(K=K, method="allpaths") genomesizes.append((K, ks.genomesize / 1e6)) leg = A.legend(lines, legends, shadow=True, fancybox=True) leg.get_frame().set_alpha(0.5) title = "{0} genome K-mer histogram".format(species) A.set_title(markup(title)) xlabel, ylabel = "Coverage (X)", "Counts" A.set_xlabel(xlabel) A.set_ylabel(ylabel) set_human_axis(A) title = "{0} genome size estimate".format(species) B.set_title(markup(title)) x, y = zip(*genomesizes) B.plot(x, y, "ko", mfc="w") t = np.linspace(opts.kmin - 0.5, opts.kmax + 0.5, 100) p = np.poly1d(np.polyfit(x, y, 2)) B.plot(t, p(t), "r:") xlabel, ylabel = "K-mer size", "Estimated genome size (Mb)" B.set_xlabel(xlabel) B.set_ylabel(ylabel) set_ticklabels_helvetica(B) labels = ((0.04, 0.96, "A"), (0.54, 0.96, "B")) panel_labels(root, labels) normalize_axes(root) imagename = species + ".multiK.pdf" savefig(imagename, dpi=iopts.dpi, iopts=iopts)
def histogram(args): """ %prog histogram [reads.fasta|reads.fastq] Plot read length distribution for reads. The plot would be similar to the one generated by SMRT-portal, for example: http://blog.pacificbiosciences.com/2013/10/data-release-long-read-shotgun.html Plot has two axes - corresponding to pdf and cdf, respectively. Also adding number of reads, average/median, N50, and total length. """ from jcvi.utils.cbook import human_size, thousands, SUFFIXES from jcvi.formats.fastq import fasta from jcvi.graphics.histogram import stem_leaf_plot from jcvi.graphics.base import plt, markup, human_formatter, \ human_base_formatter, savefig, set2, set_ticklabels_helvetica p = OptionParser(histogram.__doc__) p.set_histogram(vmax=50000, bins=100, xlabel="Read length", title="Read length distribution") p.add_option("--ylabel1", default="Counts", help="Label of y-axis on the left") p.add_option("--color", default='0', choices=[str(x) for x in range(8)], help="Color of bars, which is an index 0-7 in brewer set2") opts, args, iopts = p.set_image_options(args, figsize="6x6", style="dark") if len(args) != 1: sys.exit(not p.print_help()) fastafile, = args fastafile, qualfile = fasta([fastafile, "--seqtk"]) sizes = Sizes(fastafile) all_sizes = sorted(sizes.sizes) xmin, xmax, bins = opts.vmin, opts.vmax, opts.bins left, height = stem_leaf_plot(all_sizes, xmin, xmax, bins) plt.figure(1, (iopts.w, iopts.h)) ax1 = plt.gca() width = (xmax - xmin) * .5 / bins color = set2[int(opts.color)] ax1.bar(left, height, width=width, linewidth=0, fc=color, align="center") ax1.set_xlabel(markup(opts.xlabel)) ax1.set_ylabel(opts.ylabel1) ax2 = ax1.twinx() cur_size = 0 total_size, l50, n50 = sizes.summary cdf = {} hsize = human_size(total_size) tag = hsize[-2:] unit = 1000 ** SUFFIXES[1000].index(tag) for x in all_sizes: if x not in cdf: cdf[x] = (total_size - cur_size) * 1. / unit cur_size += x x, y = zip(*sorted(cdf.items())) ax2.plot(x, y, '-', color="darkslategray") ylabel2 = "{0} above read length".format(tag) ax2.set_ylabel(ylabel2) for ax in (ax1, ax2): set_ticklabels_helvetica(ax) ax.set_xlim((xmin - width / 2, xmax + width / 2)) tc = "gray" axt = ax1.transAxes xx, yy = .95, .95 ma = "Total bases: {0}".format(hsize) mb = "Total reads: {0}".format(thousands(len(sizes))) mc = "Average read length: {0}bp".format(thousands(np.mean(all_sizes))) md = "Median read length: {0}bp".format(thousands(np.median(all_sizes))) me = "N50 read length: {0}bp".format(thousands(l50)) for t in (ma, mb, mc, md, me): print >> sys.stderr, t ax1.text(xx, yy, t, color=tc, transform=axt, ha="right") yy -= .05 ax1.set_title(markup(opts.title)) # Seaborn removes ticks for all styles except 'ticks'. Now add them back: ax1.tick_params(axis="x", direction="out", length=3, left=False, right=False, top=False, bottom=True) ax1.xaxis.set_major_formatter(human_base_formatter) ax1.yaxis.set_major_formatter(human_formatter) figname = sizes.filename + ".pdf" savefig(figname)
def histogram(args): """ %prog histogram [reads.fasta|reads.fastq] Plot read length distribution for reads. The plot would be similar to the one generated by SMRT-portal, for example: http://blog.pacificbiosciences.com/2013/10/data-release-long-read-shotgun.html Plot has two axes - corresponding to pdf and cdf, respectively. Also adding number of reads, average/median, N50, and total length. """ from jcvi.utils.cbook import human_size, thousands, SUFFIXES from jcvi.formats.fastq import fasta from jcvi.graphics.histogram import stem_leaf_plot from jcvi.graphics.base import ( plt, markup, human_formatter, human_base_formatter, savefig, set2, set_ticklabels_helvetica, ) p = OptionParser(histogram.__doc__) p.set_histogram(vmax=50000, bins=100, xlabel="Read length", title="Read length distribution") p.add_option("--ylabel1", default="Counts", help="Label of y-axis on the left") p.add_option( "--color", default="0", choices=[str(x) for x in range(8)], help="Color of bars, which is an index 0-7 in brewer set2", ) opts, args, iopts = p.set_image_options(args, figsize="6x6", style="dark") if len(args) != 1: sys.exit(not p.print_help()) (fastafile, ) = args fastafile, qualfile = fasta([fastafile, "--seqtk"]) sizes = Sizes(fastafile) all_sizes = sorted(sizes.sizes) xmin, xmax, bins = opts.vmin, opts.vmax, opts.bins left, height = stem_leaf_plot(all_sizes, xmin, xmax, bins) plt.figure(1, (iopts.w, iopts.h)) ax1 = plt.gca() width = (xmax - xmin) * 0.5 / bins color = set2[int(opts.color)] ax1.bar(left, height, width=width, linewidth=0, fc=color, align="center") ax1.set_xlabel(markup(opts.xlabel)) ax1.set_ylabel(opts.ylabel1) ax2 = ax1.twinx() cur_size = 0 total_size, l50, n50 = sizes.summary cdf = {} hsize = human_size(total_size) tag = hsize[-2:] unit = 1000**SUFFIXES[1000].index(tag) for x in all_sizes: if x not in cdf: cdf[x] = (total_size - cur_size) * 1.0 / unit cur_size += x x, y = zip(*sorted(cdf.items())) ax2.plot(x, y, "-", color="darkslategray") ylabel2 = "{0} above read length".format(tag) ax2.set_ylabel(ylabel2) for ax in (ax1, ax2): set_ticklabels_helvetica(ax) ax.set_xlim((xmin - width / 2, xmax + width / 2)) tc = "gray" axt = ax1.transAxes xx, yy = 0.95, 0.95 ma = "Total bases: {0}".format(hsize) mb = "Total reads: {0}".format(thousands(len(sizes))) mc = "Average read length: {0}bp".format(thousands(np.mean(all_sizes))) md = "Median read length: {0}bp".format(thousands(np.median(all_sizes))) me = "N50 read length: {0}bp".format(thousands(l50)) for t in (ma, mb, mc, md, me): print(t, file=sys.stderr) ax1.text(xx, yy, t, color=tc, transform=axt, ha="right") yy -= 0.05 ax1.set_title(markup(opts.title)) # Seaborn removes ticks for all styles except 'ticks'. Now add them back: ax1.tick_params( axis="x", direction="out", length=3, left=False, right=False, top=False, bottom=True, ) ax1.xaxis.set_major_formatter(human_base_formatter) ax1.yaxis.set_major_formatter(human_formatter) figname = sizes.filename + ".pdf" savefig(figname)
def variation(args): """ %prog variation P1.bed P2.bed F1.bed Associate IES in parents and progeny. """ p = OptionParser(variation.__doc__) p.add_option("--diversity", choices=("breakpoint", "variant"), default="variant", help="Plot diversity") opts, args, iopts = p.set_image_options(args, figsize="6x6") if len(args) != 3: sys.exit(not p.print_help()) pfs = [op.basename(x).split('-')[0] for x in args] P1, P2, F1 = pfs newbedfile = "-".join(pfs) + ".bed" if need_update(args, newbedfile): newbed = Bed() for pf, filename in zip(pfs, args): bed = Bed(filename) for b in bed: b.accn = "-".join((pf, b.accn)) b.score = None newbed.append(b) newbed.print_to_file(newbedfile, sorted=True) neworder = Bed(newbedfile).order mergedbedfile = mergeBed(newbedfile, nms=True) bed = Bed(mergedbedfile) valid = 0 total_counts = Counter() F1_counts = [] bp_diff = [] novelbedfile = "novel.bed" fw = open(novelbedfile, "w") for b in bed: accns = b.accn.split(',') pfs_accns = [x.split("-")[0] for x in accns] pfs_counts = Counter(pfs_accns) if len(pfs_counts) != 3: print(b, file=fw) continue valid += 1 total_counts += pfs_counts F1_counts.append(pfs_counts[F1]) # Collect breakpoint positions between P1 and F1 P1_accns = [x for x in accns if x.split("-")[0] == P1] F1_accns = [x for x in accns if x.split("-")[0] == F1] if len(P1_accns) != 1: continue ri, ref = neworder[P1_accns[0]] P1_accns = [neworder[x][-1] for x in F1_accns] bp_diff.extend(x.start - ref.start for x in P1_accns) bp_diff.extend(x.end - ref.end for x in P1_accns) print("A total of {0} sites show consistent deletions across samples.".\ format(percentage(valid, len(bed))), file=sys.stderr) for pf, count in total_counts.items(): print("{0:>9}: {1:.2f} deletions/site".\ format(pf, count * 1. / valid), file=sys.stderr) F1_counts = Counter(F1_counts) # Plot the IES variant number diversity from jcvi.graphics.base import plt, savefig, set_ticklabels_helvetica fig = plt.figure(1, (iopts.w, iopts.h)) if opts.diversity == "variant": left, height = zip(*sorted(F1_counts.items())) for l, h in zip(left, height): print("{0:>9} variants: {1}".format(l, h), file=sys.stderr) plt.text(l, h + 5, str(h), color="darkslategray", size=8, ha="center", va="bottom", rotation=90) plt.bar(left, height, align="center") plt.xlabel("Identified number of IES per site") plt.ylabel("Counts") plt.title("IES variation in progeny pool") ax = plt.gca() set_ticklabels_helvetica(ax) savefig(F1 + ".counts.pdf") # Plot the IES breakpoint position diversity else: bp_diff = Counter(bp_diff) bp_diff_abs = Counter() for k, v in bp_diff.items(): bp_diff_abs[abs(k)] += v plt.figure(1, (iopts.w, iopts.h)) left, height = zip(*sorted(bp_diff_abs.items())) for l, h in zip(left, height)[:21]: plt.text(l, h + 50, str(h), color="darkslategray", size=8, ha="center", va="bottom", rotation=90) plt.bar(left, height, align="center") plt.xlabel("Progeny breakpoint relative to SB210") plt.ylabel("Counts") plt.xlim(-.5, 20.5) ax = plt.gca() set_ticklabels_helvetica(ax) savefig(F1 + ".breaks.pdf") # Serialize the data to a file fw = open("Breakpoint-offset-histogram.csv", "w") for k, v in sorted(bp_diff.items()): print("{0},{1}".format(k, v), file=fw) fw.close() total = sum(height) zeros = bp_diff[0] within_20 = sum([v for i, v in bp_diff.items() if -20 <= i <= 20]) print("No deviation: {0}".format(percentage(zeros, total)), file=sys.stderr) print(" Within 20bp: {0}".format(percentage(within_20, total)), file=sys.stderr)
def multihistogram(args): """ %prog multihistogram *.histogram species Plot the histogram based on a set of K-mer hisotograms. The method is based on Star et al.'s method (Atlantic Cod genome paper). """ p = OptionParser(multihistogram.__doc__) p.add_option("--kmin", default=15, type="int", help="Minimum K-mer size, inclusive") p.add_option("--kmax", default=30, type="int", help="Maximum K-mer size, inclusive") p.add_option("--vmin", default=2, type="int", help="Minimum value, inclusive") p.add_option("--vmax", default=100, type="int", help="Maximum value, inclusive") opts, args, iopts = p.set_image_options(args, figsize="10x5", dpi=300) histfiles = args[:-1] species = args[-1] fig = plt.figure(1, (iopts.w, iopts.h)) root = fig.add_axes([0, 0, 1, 1]) A = fig.add_axes([0.08, 0.12, 0.38, 0.76]) B = fig.add_axes([0.58, 0.12, 0.38, 0.76]) lines = [] legends = [] genomesizes = [] for histfile in histfiles: ks = KmerSpectrum(histfile) x, y = ks.get_xy(opts.vmin, opts.vmax) K = get_number(op.basename(histfile).split(".")[0].split("-")[-1]) if not opts.kmin <= K <= opts.kmax: continue line, = A.plot(x, y, "-", lw=1) lines.append(line) legends.append("K = {0}".format(K)) ks.analyze(K=K) genomesizes.append((K, ks.genomesize / 1e6)) leg = A.legend(lines, legends, shadow=True, fancybox=True) leg.get_frame().set_alpha(0.5) title = "{0} genome K-mer histogram".format(species) A.set_title(markup(title)) xlabel, ylabel = "Coverage (X)", "Counts" A.set_xlabel(xlabel) A.set_ylabel(ylabel) set_human_axis(A) title = "{0} genome size estimate".format(species) B.set_title(markup(title)) x, y = zip(*genomesizes) B.plot(x, y, "ko", mfc="w") t = np.linspace(opts.kmin - 0.5, opts.kmax + 0.5, 100) p = np.poly1d(np.polyfit(x, y, 2)) B.plot(t, p(t), "r:") xlabel, ylabel = "K-mer size", "Estimated genome size (Mb)" B.set_xlabel(xlabel) B.set_ylabel(ylabel) set_ticklabels_helvetica(B) labels = ((0.04, 0.96, "A"), (0.54, 0.96, "B")) panel_labels(root, labels) normalize_axes(root) imagename = species + ".multiK.pdf" savefig(imagename, dpi=iopts.dpi, iopts=iopts)
def variation(args): """ %prog variation P1.bed P2.bed F1.bed Associate IES in parents and progeny. """ p = OptionParser(variation.__doc__) p.add_option("--diversity", choices=("breakpoint", "variant"), default="variant", help="Plot diversity") opts, args, iopts = p.set_image_options(args, figsize="6x6") if len(args) != 3: sys.exit(not p.print_help()) pfs = [op.basename(x).split('-')[0] for x in args] P1, P2, F1 = pfs newbedfile = "-".join(pfs) + ".bed" if need_update(args, newbedfile): newbed = Bed() for pf, filename in zip(pfs, args): bed = Bed(filename) for b in bed: b.accn = "-".join((pf, b.accn)) b.score = None newbed.append(b) newbed.print_to_file(newbedfile, sorted=True) neworder = Bed(newbedfile).order mergedbedfile = mergeBed(newbedfile, nms=True) bed = Bed(mergedbedfile) valid = 0 total_counts = Counter() F1_counts = [] bp_diff = [] novelbedfile = "novel.bed" fw = open(novelbedfile, "w") for b in bed: accns = b.accn.split(',') pfs_accns = [x.split("-")[0] for x in accns] pfs_counts = Counter(pfs_accns) if len(pfs_counts) != 3: print >> fw, b continue valid += 1 total_counts += pfs_counts F1_counts.append(pfs_counts[F1]) # Collect breakpoint positions between P1 and F1 P1_accns = [x for x in accns if x.split("-")[0] == P1] F1_accns = [x for x in accns if x.split("-")[0] == F1] if len(P1_accns) != 1: continue ri, ref = neworder[P1_accns[0]] P1_accns = [neworder[x][-1] for x in F1_accns] bp_diff.extend(x.start - ref.start for x in P1_accns) bp_diff.extend(x.end - ref.end for x in P1_accns) print >> sys.stderr, \ "A total of {0} sites show consistent deletions across samples.".\ format(percentage(valid, len(bed))) for pf, count in total_counts.items(): print >> sys.stderr, "{0:>9}: {1:.2f} deletions/site".\ format(pf, count * 1. / valid) F1_counts = Counter(F1_counts) # Plot the IES variant number diversity from jcvi.graphics.base import plt, savefig, set_ticklabels_helvetica fig = plt.figure(1, (iopts.w, iopts.h)) if opts.diversity == "variant": left, height = zip(*sorted(F1_counts.items())) for l, h in zip(left, height): print >> sys.stderr, "{0:>9} variants: {1}".format(l, h) plt.text(l, h + 5, str(h), color="darkslategray", size=8, ha="center", va="bottom", rotation=90) plt.bar(left, height, align="center") plt.xlabel("Identified number of IES per site") plt.ylabel("Counts") plt.title("IES variation in progeny pool") ax = plt.gca() set_ticklabels_helvetica(ax) savefig(F1 + ".counts.pdf") # Plot the IES breakpoint position diversity else: bp_diff = Counter(bp_diff) bp_diff_abs = Counter() for k, v in bp_diff.items(): bp_diff_abs[abs(k)] += v plt.figure(1, (iopts.w, iopts.h)) left, height = zip(*sorted(bp_diff_abs.items())) for l, h in zip(left, height)[:21]: plt.text(l, h + 50, str(h), color="darkslategray", size=8, ha="center", va="bottom", rotation=90) plt.bar(left, height, align="center") plt.xlabel("Progeny breakpoint relative to SB210") plt.ylabel("Counts") plt.xlim(-.5, 20.5) ax = plt.gca() set_ticklabels_helvetica(ax) savefig(F1 + ".breaks.pdf") # Serialize the data to a file fw = open("Breakpoint-offset-histogram.csv", "w") for k, v in sorted(bp_diff.items()): print >> fw, "{0},{1}".format(k, v) fw.close() total = sum(height) zeros = bp_diff[0] within_20 = sum([v for i, v in bp_diff.items() if -20 <= i <= 20]) print >> sys.stderr, "No deviation: {0}".format(percentage(zeros, total)) print >> sys.stderr, " Within 20bp: {0}".format(percentage(within_20, total))