def _infer_subscript_list(context, index): """ Handles slices in subscript nodes. """ if index == ':': # Like array[:] return ValueSet([iterable.Slice(context, None, None, None)]) elif index.type == 'subscript' and not index.children[0] == '.': # subscript basically implies a slice operation # e.g. array[:3] result = [] for el in index.children: if el == ':': if not result: result.append(None) elif el.type == 'sliceop': if len(el.children) == 2: result.append(el.children[1]) else: result.append(el) result += [None] * (3 - len(result)) return ValueSet([iterable.Slice(context, *result)]) elif index.type == 'subscriptlist': return ValueSet([ iterable.SequenceLiteralValue(context.inference_state, context, index) ]) # No slices return context.infer_node(index)
def infer_atom(context, atom): """ Basically to process ``atom`` nodes. The parser sometimes doesn't generate the node (because it has just one child). In that case an atom might be a name or a literal as well. """ state = context.inference_state if atom.type == 'name': # This is the first global lookup. stmt = tree.search_ancestor(atom, 'expr_stmt', 'lambdef', 'if_stmt') or atom if stmt.type == 'if_stmt': if not any(n.start_pos <= atom.start_pos < n.end_pos for n in stmt.get_test_nodes()): stmt = atom elif stmt.type == 'lambdef': stmt = atom position = stmt.start_pos if _is_annotation_name(atom): # Since Python 3.7 (with from __future__ import annotations), # annotations are essentially strings and can reference objects # that are defined further down in code. Therefore just set the # position to None, so the finder will not try to stop at a certain # position in the module. position = None return context.py__getattribute__(atom, position=position) elif atom.type == 'keyword': # For False/True/None if atom.value in ('False', 'True', 'None'): return ValueSet([compiled.builtin_from_name(state, atom.value)]) elif atom.value == 'yield': # Contrary to yield from, yield can just appear alone to return a # value when used with `.send()`. return NO_VALUES assert False, 'Cannot infer the keyword %s' % atom elif isinstance(atom, tree.Literal): string = state.compiled_subprocess.safe_literal_eval(atom.value) return ValueSet([compiled.create_simple_object(state, string)]) elif atom.type == 'strings': # Will be multiple string. value_set = infer_atom(context, atom.children[0]) for string in atom.children[1:]: right = infer_atom(context, string) value_set = _infer_comparison(context, value_set, '+', right) return value_set elif atom.type == 'fstring': return compiled.get_string_value_set(state) else: c = atom.children # Parentheses without commas are not tuples. if c[0] == '(' and not len(c) == 2 \ and not(c[1].type == 'testlist_comp' and len(c[1].children) > 1): return context.infer_node(c[1]) try: comp_for = c[1].children[1] except (IndexError, AttributeError): pass else: if comp_for == ':': # Dict comprehensions have a colon at the 3rd index. try: comp_for = c[1].children[3] except IndexError: pass if comp_for.type in ('comp_for', 'sync_comp_for'): return ValueSet( [iterable.comprehension_from_atom(state, context, atom)]) # It's a dict/list/tuple literal. array_node = c[1] try: array_node_c = array_node.children except AttributeError: array_node_c = [] if c[0] == '{' and (array_node == '}' or ':' in array_node_c or '**' in array_node_c): new_value = iterable.DictLiteralValue(state, context, atom) else: new_value = iterable.SequenceLiteralValue(state, context, atom) return ValueSet([new_value])
def _infer_node(context, element): debug.dbg('infer_node %s@%s in %s', element, element.start_pos, context) inference_state = context.inference_state typ = element.type if typ in ('name', 'number', 'string', 'atom', 'strings', 'keyword', 'fstring'): return infer_atom(context, element) elif typ == 'lambdef': return ValueSet([FunctionValue.from_context(context, element)]) elif typ == 'expr_stmt': return infer_expr_stmt(context, element) elif typ in ('power', 'atom_expr'): first_child = element.children[0] children = element.children[1:] had_await = False if first_child.type == 'keyword' and first_child.value == 'await': had_await = True first_child = children.pop(0) value_set = context.infer_node(first_child) for (i, trailer) in enumerate(children): if trailer == '**': # has a power operation. right = context.infer_node(children[i + 1]) value_set = _infer_comparison(context, value_set, trailer, right) break value_set = infer_trailer(context, value_set, trailer) if had_await: return value_set.py__await__().py__stop_iteration_returns() return value_set elif typ in ( 'testlist_star_expr', 'testlist', ): # The implicit tuple in statements. return ValueSet( [iterable.SequenceLiteralValue(inference_state, context, element)]) elif typ in ('not_test', 'factor'): value_set = context.infer_node(element.children[-1]) for operator in element.children[:-1]: value_set = infer_factor(value_set, operator) return value_set elif typ == 'test': # `x if foo else y` case. return (context.infer_node(element.children[0]) | context.infer_node(element.children[-1])) elif typ == 'operator': # Must be an ellipsis, other operators are not inferred. if element.value != '...': origin = element.parent raise AssertionError("unhandled operator %s in %s " % (repr(element.value), origin)) return ValueSet( [compiled.builtin_from_name(inference_state, 'Ellipsis')]) elif typ == 'dotted_name': value_set = infer_atom(context, element.children[0]) for next_name in element.children[2::2]: value_set = value_set.py__getattribute__(next_name, name_context=context) return value_set elif typ == 'eval_input': return context.infer_node(element.children[0]) elif typ == 'annassign': return annotation.infer_annotation(context, element.children[1]) \ .execute_annotation() elif typ == 'yield_expr': if len(element.children) and element.children[1].type == 'yield_arg': # Implies that it's a yield from. element = element.children[1].children[1] generators = context.infer_node(element) \ .py__getattribute__('__iter__').execute_with_values() return generators.py__stop_iteration_returns() # Generator.send() is not implemented. return NO_VALUES elif typ == 'namedexpr_test': return context.infer_node(element.children[2]) else: return infer_or_test(context, element)