def test_construct_distance_graph(self): b_s = BaseSolution() b_s.model_temporal_problem("Cranfield_Assembly") b_s.relax_network() b_s.construct_distance_graph() b_s.display_graph("test_construct_distance_graph") self.assertTrue(False)
def test_model_network(self): b_s = BaseSolution() b_s.model_temporal_problem("Cranfield_Assembly") b_s.display_graph("test_model_network") self.assertTrue(False)
def test_backpropagate_task_assign(self): b_s = BaseSolution() s_o_d = SetOfDifferences() policy = Policy() # Create plan b_s.model_temporal_problem("Cranfield_Assembly") b_s.relax_network() b_s.construct_distance_graph() b_s.all_pairs_shortest_paths() b_s.prune_redundant_constraints() # Evaluate policies print("Evaluating: {}".format(b_s._graph.nodes.data())) policy.evaluate(b_s) print("Policy results") print(policy.valid_assignments) print(policy.data) # Build set of differences s_o_d.initialize_set_of_differences(b_s, policy) print(s_o_d.self.valid_assignments) for full_assignment in s_o_d.valid_assignments: constraints = [asg[0] for asg in full_assignment.task_assignments] temporally_consistent = s_o_d.backpropagate_task_assign( constraints, self.base_solution, full_assignment) if not temporally_consistent: full_assignment.feasible = False self.assertTrue(False)
def test_create_component_solution(self): b_s = BaseSolution() s_o_d = SetOfDifferences() policy = Policy() # Create plan b_s.model_temporal_problem("Cranfield_Assembly") b_s.relax_network() b_s.construct_distance_graph() b_s.all_pairs_shortest_paths() b_s.prune_redundant_constraints() # Evaluate policies print("Evaluating: {}".format(b_s._graph.nodes.data())) policy.evaluate(b_s) print("Policy results") print(policy.valid_assignments) print(policy.data) # Build set of differences s_o_d.initialize_set_of_differences(b_s, policy) self.assertTrue(False)
def test_policy_evaluate(self): b_s = BaseSolution() policy = Policy() # Create plan b_s.model_temporal_problem("Cranfield_Assembly") b_s.relax_network() b_s.construct_distance_graph() b_s.all_pairs_shortest_paths() b_s.prune_redundant_constraints() # print("Evaluating: {}".format(b_s._graph.nodes.data())) policy.evaluate(b_s) print("Policy results") print(policy.valid_assignments) print(policy.data) self.assertTrue(False)
def test_prune_redundant_constraints(self): b_s = BaseSolution() b_s.model_temporal_problem("Cranfield_Assembly") b_s.relax_network() b_s.construct_distance_graph() b_s.all_pairs_shortest_paths() b_s.prune_redundant_constraints() b_s.display_graph("test_prune_redundant_constraints") self.assertTrue(False)