def setUp(self): HOCON = """ lr = 123.456 pretrain_data_fraction = .123 target_train_data_fraction = .1234 mnli = { lr = 4.56, batch_size = 123 max_epochs = 456 training_data_fraction = .456 } qqp = { max_epochs = 789 } """ DEFAULTS_PATH = "config/defaults.conf" # To get other required values. params = params_from_file(DEFAULTS_PATH, HOCON) self.processed_pretrain_params = build_trainer_params( params, ["mnli", "qqp"], phase="pretrain" ) self.processed_mnli_target_params = build_trainer_params( params, ["mnli"], phase="target_train" ) self.processed_qqp_target_params = build_trainer_params( params, ["qqp"], phase="target_train" )
def setUp(self): HOCON = """ lr = 123.456 pretrain_data_fraction = .123 target_train_data_fraction = .1234 mnli = { lr = 4.56, batch_size = 123 max_epochs = 456 training_data_fraction = .456 } qqp = { max_epochs = 789 } """ DEFAULTS_PATH = resource_filename( "jiant", "config/defaults.conf") # To get other required replacers. params = params_from_file(DEFAULTS_PATH, HOCON) cuda_device = -1 self.processed_pretrain_params = build_trainer_params(params, cuda_device, ["mnli", "qqp"], phase="pretrain") self.processed_mnli_target_params = build_trainer_params( params, cuda_device, ["mnli"], phase="target_train") self.processed_qqp_target_params = build_trainer_params( params, cuda_device, ["qqp"], phase="target_train")
def setUp(self): HOCON = """ lr = 123.456 pretrain_data_fraction = .123 target_train_data_fraction = .1234 mnli = { lr = 4.56, batch_size = 123 max_epochs = 456 training_data_fraction = .456 } qqp = { max_epochs = 789 } """ DEFAULTS_PATH = resource_filename( "jiant", "config/defaults.conf") # To get other required values. params = params_from_file(DEFAULTS_PATH, HOCON) cuda_device = -1 self.processed_pretrain_params = build_trainer_params(params, cuda_device, ["mnli", "qqp"], phase="pretrain") self.processed_mnli_target_params = build_trainer_params( params, cuda_device, ["mnli"], phase="target_train") self.processed_qqp_target_params = build_trainer_params( params, cuda_device, ["qqp"], phase="target_train") self.pretrain_tasks = [] pretrain_task_registry = { "sst": REGISTRY["sst"], "winograd-coreference": REGISTRY["winograd-coreference"], "commitbank": REGISTRY["commitbank"], } for name, (cls, _, kw) in pretrain_task_registry.items(): task = cls("dummy_path", max_seq_len=1, name=name, tokenizer_name="dummy_tokenizer_name", **kw) self.pretrain_tasks.append(task)