예제 #1
0
def SelectLeastsq(array, ref=None, axis=0, cut=None):
    '''
	array:
		N-D array, for example, a.shape=4x5x6
		I want to get a[:,i,:] which is the most resonable one along the second axis

	ref:
		reference to judge
		(1) ==ndarray: array-ref, can broadcast
		(2) =='mean': array-array.mean(axis)
		(3) =='eachother': use the difference of each other to judge

	axis:
		along which axis of array

	cut:
		(1) None/False: return all
		(2) True/int: cut automatically
				vmax = m.max() + cut*(m.max()-std.min())

	return:
		norder.size = array.shape[axis]
	'''
    import numpy as np
    from jizhipy.Array import ArrayAxis
    from jizhipy.Basic import IsType
    from jizhipy.Optimize import Medfilt
    # check axis
    Ntot = array.shape[axis]
    # ref
    try:
        array = array - ref
        ref = 'give'
    except:
        ref = str(ref).lower()
        if (ref != 'mean'): ref = 'eachother'
    # Move axis to 0
    array = ArrayAxis(array, axis, 0, 'move')
    if (ref != 'eachother'):
        if (ref == 'mean'): array = array - array.mean(0)
        sidx = tuple(range(len(array.shape)))
        std = (array**2).mean(sidx[1:])
    else:
        std = []
        for i in range(Ntot):
            a = array - array[i]
            a = (a**2).mean()
            std.append(a)
        std = np.array(std)
    norder = std + 1j * np.arange(Ntot)
    norder = np.sort(norder).imag.astype(int)
    std = std[norder]
    # cut
    if (not IsType.isfalse(cut)):
        m = Medfilt(std, 0, std.size / 5)
        vmax = m.max() + cut * (m.max() - std.min())
        norder = norder[std <= vmax]
        std = std[std <= vmax]
    return [norder, std]
예제 #2
0
def Sample(array, axis, per=None, size=None):
    '''
	Reduce the size of array

	array:
		Any shape, any dtype
		int/float/complex ndarray
		MaskedArray

	axis: 
		Sampling along which axis?

	per, size:
		Use one of them
		(1) per, size=None:
				Sampling every per ponts
		(2) per=None, size:
				Sampled array.shape[axis] == size
	'''
    import numpy as np
    from jizhipy.Basic import IsType, Raise
    from jizhipy.Array import ArrayAxis
    if (not IsType.isndarray(array) and not IsType.isnmaskedarray(array)
            and not IsType.ismatrix(array)):
        array = np.array(array)
    if (len(array.shape) == 1): axis = 0
    elif (axis < 0): axis += len(array.shape)
    if (axis >= len(array.shape)):
        Raise(Exception,
              'axis=' + str(axis) + ' out of array.shape=' + str(array.shape))
    #----------------------------------------
    if (per is None and size is None):
        return array
        #----------------------------------------
    elif (per is None and array.shape[axis] >= size):
        return Smooth(array, axis, reduceshape=size)
    #----------------------------------------
    elif (per is not None):
        per += 0
        n = np.arange(0, array.shape[axis], per)
    else:
        size += 0
        n = np.linspace(0, array.shape[axis] - 1, size)
    n = n.astype(int)
    #----------------------------------------
    array = ArrayAxis(array, axis, 0)
    array = array[n]
    array = ArrayAxis(array, 0, axis)
    return array
예제 #3
0
파일: Sort.py 프로젝트: jizhi/jizhipy
def Sort( array, along='[0,:]', l2s=False ) : 
	'''
	array:
		Can be any shape

	along:
		Must as format like '[n1,n2,:,n4]'
		Must have ':', use [2,:] instead of [2]
		array[n1,n2,:,n4] must 1D so that we can sort along this
		along=[:,2] : second column

		'[0,:]' => 0-row
		'[:,0]' => 0-column

	l2s: 
		l2s=False: from small to large (default)
		l2s=True : from large to small
	'''
	import numpy as np
	from jizhipy.Array import Asarray, ArrayAxis
	along = along[1:-1].split(',')
	axis = along.index(':')
	along.pop(axis)
	along = np.array(along, int)
	#--------------------------------------------------
	array = Asarray(array)
	if (len(array.shape) == 1) : 
		array = np.sort(array)
		if (l2s) : array = array[::-1]
		return array
	#--------------------------------------------------
	if (array.shape[axis] == 1) : return array
	array = ArrayAxis(array, axis, -1, 'move')
	shape = array.shape
	#--------------------------------------------------
	cumprod = np.cumprod((shape[1:-1]+(1,))[::-1])[::-1]
	along = (along*cumprod).sum()
	a = array.reshape(np.prod(shape[:-1]), shape[-1])[along]
	#--------------------------------------------------
	a = a + 1j*np.arange(a.size)
	a = np.sort(a).imag.astype(int)
	if (l2s) : a = a[::-1]
	#--------------------------------------------------
	array = ArrayAxis(array, -1, 0, 'move')
	array = array[a]
	array = ArrayAxis(array, 0, axis, 'move')
	return array
예제 #4
0
def ArraySplit( array, axis, which ) : 
	'''	
	axis:
		split along which axis

	which:
		=='1G' | '1GB'
		==int
	'''
	import numpy as np
	from jizhipy.Array import Asarray, ArrayAxis, Repection
	from jizhipy.Basic import IsType
	array = Asarray(array)
	if (IsType.isint(which)) : mem, N = None, which
	elif (IsType.isstr(which)) : 
		which = str(which).lower()
		if ((which[-1]=='g' and which[-2] in '0123456789')) : mem = float(which[:-1])
		elif ((which[-2:]=='gb' and which[-3] in '0123456789')) : mem = float(which[:-2])  # GB
	else : 
		array = ArrayAxis(array, axis, 0, 'move')
		array = array[None,:]
		array = ArrayAxis(array, 0, axis+1, 'move')
		return array
	#--------------------------------------------------
	if (mem is not None) : 
		bit, n = array.dtype.name, 0
		while (bit[n] not in '0123456789') : n += 1
		bit = float(bit[n:])
		size = array.size
		memtot = size / 1e8 * 0.8 * bit/64
		N = int(memtot / mem) + 1
	m = np.linspace(0, array.shape[axis], N+1).astype(int)
	m = Repetition(m, renon=True)
	b = []
	array = ArrayAxis(array, axis, 0, 'move')
	for i in range(len(m)-1) : 
		a = ArrayAxis(array[m[i]:m[i+1]], 0, axis)
		b.append(a)
	return b
예제 #5
0
파일: CoordTrans.py 프로젝트: jizhi/jizhipy
 def _RotationMatrix(self, key, ang, islist):
     ''' return R, not call directly '''
     from jizhipy.Array import ArrayAxis
     import numpy as np
     one = np.ones(ang.shape)
     zero = np.zeros(ang.shape)
     if (key == 'ax'):
         R = np.array([[one, zero, zero], [zero,
                                           np.cos(ang),
                                           np.sin(ang)],
                       [zero, -np.sin(ang), np.cos(ang)]])
     elif (key == 'ay'):
         R = np.array([[np.cos(ang), zero, -np.sin(ang)], [zero, one, zero],
                       [np.sin(ang), zero, np.cos(ang)]])
     elif (key == 'az'):
         R = np.array([[np.cos(ang), np.sin(ang), zero],
                       [-np.sin(ang), np.cos(ang), zero], [zero, zero,
                                                           one]])
     else:
         Raise(Exception, "key in **kwargs not in ['ax', 'ay', 'az']")
     R = ArrayAxis(R, 0, -1, 'move')
     R = ArrayAxis(R, 0, -1, 'move')
     if (not islist): R = R[0]
     return R
예제 #6
0
def ResetMasked(maskedarray, axis, Nprocess=None, fast=0, nfast=None):
    '''
	Use the elements around the masked elements to calculate some values, then use these values to fill/reset the masked elements
	Return a non-masked array

	maskedarray:
		Any dimension np.ma.MaskedArray()

	axis:
		Along which axis to guess the values

	fast:
		How fast to do ResetMasked()?
		fast in [0, 1, 2]
		(1) ==0/None: fastest, not do Smooth() nor Medfilt()
		(2) ==1: middle, do Smooth()
		(3) ==2: slowest, do Medfilt()

	nfast:
		For fast in [1, 2]
		(1) fast==1: Smooth(a, 0, 3, nfast)
		(2) fast==2: Medfilt(a, 0, nfast)

	return:
		resetvalue = ResetMasked(...)
		Usage: maskedarray[maskedarray.mask] = resetvalue
	'''
    import numpy as np
    from jizhipy.Process import PoolFor, NprocessCPU
    from jizhipy.Array import ArrayAxis
    if (maskedarray.mask[maskedarray.mask].size == 0): return np.array([])
    Nprocess = NprocessCPU(Nprocess)[0]
    mask = (1 - maskedarray.mask).astype(bool)
    if (axis == 0):
        maskedarray = maskedarray.data.T
        mask = mask.T
    else:
        maskedarray = ArrayAxis(maskedarray.data, axis, -1, 'move')
        mask = ArrayAxis(mask, axis, -1, 'move')
    shape = mask.shape
    maskedarray = maskedarray.reshape(int(np.prod(shape[:-1])), shape[-1])
    mask = mask.reshape(int(np.prod(shape[:-1])), shape[-1])
    #--------------------------------------------------
    try:
        fast = int(fast)
    except:
        fast = 0
    try:
        nfast = int(nfast)
    except:
        nfast = 3
    send = (maskedarray, mask)
    bcast = (fast, nfast)
    if (Nprocess <= 1):
        iterable = (None, send, bcast)
        maskedarray = _DoMultiprocess_ResetMasked(iterable)
    else:
        pool = PoolFor(0, mask.shape[0], Nprocess)
        maskedarray = pool.map_async(_DoMultiprocess_ResetMasked, send, bcast)
        maskedarray = np.concatenate(maskedarray, 0)
    #--------------------------------------------------
    maskedarray, mask = maskedarray.reshape(shape), mask.reshape(shape)
    if (axis == 0):
        maskedarray = maskedarray.T
        mask = mask.T
    else:
        maskedarray = ArrayAxis(maskedarray, -1, axis, 'move')
        mask = ArrayAxis(mask, -1, axis, 'move')
    mask = (1 - mask).astype(bool)
    return maskedarray[mask]
예제 #7
0
def Smooth(array,
           axis,
           per=3,
           times=None,
           std=None,
           filt=None,
           sigma=False,
           reduceshape=False,
           nlr=True,
           fft=False,
           Nprocess=1):
    '''
	Smooth/Average/Mean array along one axis.
	We can also use spsn.convolve() to do this, but spsn.convolve() will cost much more memory and time, so, the function written here is the best and fastest.

	array:
		Any shape, any dtype
		(1) int/float/complex array: faster
		(2) MaskedArray: slower

	nlr:
		Large times/std will make the left and right edge worse and worse
		Select different nlr, the edge effect wil be different. Try different nlr and use the best case !!!
		(1) ==None: append first/last "element"
		(2) ==True: set nlr=[len(array)/100, len(array)/100]
		(3) ==[int, int]: set nlr=[int, int]  # interp1d
		(4) isnum (float or int): as the outside value (nlr=0)
		(5) =='periodic': append right end to the left head, left head to right end
		(6) ==False: don't append, always filt.sum()==1, completely ==Convolve(array, filt)
		(7) =='mirror': append mirror

	axis:
		array will be smoothed/averaged along this axis.

	** First use (per, times), second use std, third use filt

	per, times:
		int, int/'stock'
		Smooth times, for each time, the window size=per: equivalent to use GaussianFilter(per, times) to convolve array

	std:
		isnum, unit is "pixel"
		The std of GaussianFilter
		std = fwhm / (8*np.log(2))**0.5

	filt:
		Use this filter directly, any size
		NOTE THAT must filt.sum()==1 (normalized), otherwise the result may be bad

	sigma:
		Used in case 1,2,3,4, NOT 5
		False, True, int, np.array
		(1) ==False: don't return the error
		(2) ==True: calculate the error of the output
		(3) ==isnum or np.array: use this sigma to calculate the error of the output

	reduceshape:
		(1) ==False: return.shape = array.shape
		(2) ==True: used togather with per, reduce the data
		(3) ==int: return.shape[axis]==this int, this int can >= or < array.shape[axis], any value you want

	fft:
		True | False
		Use FFT to convolve or NOT?

	Note that:
		Wide of 2 windows: w1 < w2
		a1  = Convolve(a,  w1)
		a2  = Convolve(a,  w2)
		a12 = Convolve(a1, w2)
		=> a12 = Smooth(a2)
		But the beam sizes of the result maps are similar (roughly the same), Beamsize(a12) >= Beamsize(a2).

	(1) Smooth( a, axis, per, times )
	(2) Smooth( a, axis, std=std )
	(3) Smooth( a, axis, filt=filt )
	(4) Smooth( a, axis, per, reduceshape=True )
	(5) Smooth( a, axis, reduceshape=int number )
	'''
    import numpy as np
    from jizhipy.Basic import IsType, Raise
    from jizhipy.Array import ArrayAxis, Asarray
    from jizhipy.Process import PoolFor, NprocessCPU
    array = Asarray(array)
    dtype, shape = array.dtype.name, array.shape
    if (len(shape) == 1): axis = 0
    if (axis < 0): axis = len(shape) + axis
    if (axis >= len(shape)):
        Raise(Exception,
              'axis=' + str(axis) + ' out of array.shape=' + str(shape))
    #--------------------------------------------------
    if (per is not None and IsType.isstr(times)):
        per, times = int(per), str(times).lower()
        if ('stock' not in times):
            Raise(Exception, 'per is int, but times = ' + times + ' != stock')
        case = 6
    #--------------------------------------------------
    elif (per is not None and times is not None):
        per, times, case = int(per), int(times), 1
    elif (std is not None):
        std, case = float(std), 2
    elif (filt is not None):
        filt, case = Asarray(filt), 3
    elif (per is not None and reduceshape is True):
        per, case = int(per), 4
    elif (IsType.isnum(reduceshape)):
        N, sigma, case = int(reduceshape), False, 5
    #--------------------------------------------------
    if (case == 1 and (per <= 1 or times <= 0)):
        return array
        #	elif (case == 2 and std < 1) : return array
    elif (case == 3 and abs(filt).max() < 1e-9):
        return array
    elif (case == 4 and per <= 1):
        return array
    elif (case == 5 and N == shape[axis]):
        return array
    #--------------------------------------------------
    #--------------------------------------------------

    # int array to float32
    if ('int' in dtype):
        dtype = 'float32'
        array = array.astype(dtype)
    #--------------------------------------------------
    # Move axis to axis=0, smooth along axis=0
    array = ArrayAxis(array, axis, 0, 'move')
    shape0 = array.shape
    # N-D array to 2D | matrix
    if (len(shape0) == 1): array = array[:, None]
    elif (len(shape0) > 2):
        array = array.reshape(shape0[0], int(np.prod(shape0[1:])))
    shape = array.shape
    # shape0: after ArrayAxis(), smooth along shape0[0]
    # shape: 2D
    #--------------------------------------------------
    Nprocess = NprocessCPU(Nprocess)[0]
    if (Nprocess > shape[1]): Nprocess = shape[1]
    #--------------------------------------------------
    #--------------------------------------------------

    if (case == 5):  # Smooth(array, axis, reduceshape=int)
        # Now smooth along axis=0
        if (shape[1] > N):
            n = np.linspace(0, shape[0], N + 1).astype(int)
            n = np.array([n[:-1], n[1:]]).T
            if (Nprocess <= 1):
                iterable = (None, (array, n), None)
                array = _Multiprocess_SmoothLarge(iterable)
            else:
                pool, send = PoolFor(0, N, Nprocess), []
                ns, a = pool.nsplit, []
                for i in range(len(ns)):
                    m = n[ns[i, 0]:ns[i, 1]]
                    a = array[m[0, 0]:m[-1, 1]]
                    m -= m[0, 0]
                    send.append([a, m])
                pool = PoolFor()
                array = pool.map_async(_Multiprocess_SmoothLarge, send)
                array = np.concatenate(array, 0)
        #----------------------------------------
        else:
            if (Nprocess <= 1):
                iterable = (None, array.T, N)
                array = _Multiprocess_SmoothSmall(iterable)
            else:
                pool = PoolFor(0, array.shape[1], Nprocess)
                array = pool.map_async(_Multiprocess_SmoothSmall, array.T, N)
                array = np.concatenate(array, 1)
        array = array.reshape((len(array), ) + shape0[1:])
    #--------------------------------------------------
    #--------------------------------------------------

    # per is even, b[i] = a[i+1-per/2:i+1+per/2]
    # per is  odd, b[i] = a[i  -per/2:i+1+per/2]
    # per is even, left end + [:per/2-1], right end + [-per/2:]
    # per is  odd, left end + [:per/2  ], right end + [-per/2:]
    #--------------------------------------------------
    # nlr:
    # If reduceshape==False, large times will make the left and right edge worse and worse
    # (1) ==False/None: append first/last element
    # (2) ==True: set nlr=[len(array)/100, len(array)/100]
    # (3) ==[int, int]: set nlr=[int, int]
    # (4) isnum (float or int): as the outside value
    # (5) =='periodic': append right end to the left head, left head to right end
    elif (case in [1, 2, 3, 6]):
        # Smooth(array, axis, per, times)
        # Smooth(array, axis, std=std)
        # Smooth(array, axis, filt=filt)
        # Smooth(array, axis, per, 'stock')
        if (case == 1): weight = GaussianFilter(per, times)[0]
        elif (case == 2): weight = GaussianFilter(None, None, std, shape[0])[0]
        elif (case == 3): weight = filt
        elif (case == 6): weight = GaussianFilter(per, 1)[0]  #@!
        # Normalized
        weight /= weight.sum()
        # Cut the filter in order to faster
        weight = weight[weight > 3e-5 * weight.max()]  #@#@#@
        Nw = len(weight)
        #--------------------------------------------------
        if (case == 6): nla, nra, nlr = Nw - 1, 0, None  #@!
        else:
            nla = int(Nw / 2) if (Nw % 2 == 1) else int(Nw / 2) - 1
            nra = int(Nw / 2)
        if (nlr is None): casenlr = 1
        elif (nlr is True):
            n = int(len(array) / 100)
            if (n < 5): n = 5
            nlr, casenlr = [n, n], 2
        elif (IsType.isnum(nlr)):
            casenlr = 4
        elif (
                IsType.isstr(nlr) and
            (str(nlr).lower() == 'periodic' or str(nlr).lower()[:3] == 'per')):
            casenlr = 5
        elif (IsType.isstr(nlr) and str(nlr).lower() == 'mirror'):
            casenlr = 7
        elif (nlr is False):
            nlr, casenlr = np.nan, 6
        else:
            nlr, casenlr = nlr[:2], 3
        #--------------------------------------------------
        #	nla, nra = nla+1, nra+1
        bcast = [weight, nla, nra, sigma, nlr, casenlr, fft]
        if (Nprocess == 1):
            iterable = ((None, None), array.T, bcast)
            array = _Multiprocess_Smooth(iterable)
        else:
            pool = PoolFor(0, array.shape[1], Nprocess)
            array = pool.map_async(_Multiprocess_Smooth, array.T, bcast)
            array = np.concatenate(array, 1)
        if (sigma is True):
            arrstd = array[shape[0]:].reshape(shape0)
            array = array[:shape[0]]
        array = array.reshape(shape0)
    #--------------------------------------------------
    #--------------------------------------------------

    elif (case == 4):  # Smooth(array, axis, per, reduceshape=True)
        shape = array.shape
        if (Nprocess > shape[0]): Nprocess = shape[0]
        bcast = (per, sigma)
        #--------------------------------------------------
        if (Nprocess <= 1):
            iterable = (None, array, bcast)
            array = _Multiprocess_SmoothReduce(iterable)
        #--------------------------------------------------
        else:
            #	n2 = PoolFor(0, len(n1), Nprocess).nsplit
            #	send = []
            #	for i in range(len(n2)) :
            #		j, k = n2[i]
            #		n3 = n1[j:k]
            #		send.append([n3, array[n3.min():n3.max()]])
            n1 = np.append(np.arange(0, shape[0], per), [shape[0]])
            n1 = np.array([n1[:-1], n1[1:]]).T
            n2 = np.linspace(0, len(n1), Nprocess + 1).round().astype(int)
            nsplit, send = [], []
            for i in range(len(n2) - 1):
                n = n1[n2[i]:n2[i + 1]]
                if (n.size > 0): nsplit.append(n)
            for i in range(len(nsplit)):
                n1, n2 = nsplit[i].min(), nsplit[i].max()
                send.append(array[n1:n2])
            pool = PoolFor()
            array = pool.map_async(_Multiprocess_SmoothReduce, send, bcast)
            array = np.concatenate(array, 0)
        if (sigma):
            array, arrstd = array[:, 0], array[:, 1]
            arrstd = arrstd.reshape((len(array), ) + shape0[1:])
        array = array.reshape((len(array), ) + shape0[1:])
    #--------------------------------------------------
    #--------------------------------------------------

    array = ArrayAxis(array, 0, axis, 'move')
    array = array.astype(dtype)
    if (sigma):
        arrstd = ArrayAxis(arrstd, 0, axis, 'move')
        arrstd = arrstd.astype(dtype)
        return [array, arrstd]
    return array
예제 #8
0
def Medfilt(array, axis, kernel_size, Nprocess=1):
    '''
	array:
		Any shape
		dtype: 
			int/float/complex
			NOT MaskedArray

	axis:
		None | int number
		(1) ==None: 
			use scipy.signal.medfilt(array, kernel_size)
			do 1D, 2D, 3D, ..., N-D medfilt
		(2) ==int number: 
			mediam filter along this axis
			do 1D medfilt for all axes
	'''
    if (kernel_size is None or kernel_size < 3): return array
    import scipy.signal as spsn
    import numpy as np
    from jizhipy.Array import Asarray, ArrayAxis
    from jizhipy.Process import PoolFor, NprocessCPU
    Nprocess = NprocessCPU(Nprocess)[0]
    array, kernel_size = Asarray(array), Asarray(kernel_size).flatten()
    shape, dtype = array.shape, array.dtype
    array = 1. * array

    tf = (kernel_size % 2 == 0)
    kernel_size[tf] += 1
    kernel_size = kernel_size[:len(shape)]
    kernel_size = np.append(
        kernel_size,
        [kernel_size[0] for i in range(len(shape) - len(kernel_size))])
    kernel_size = kernel_size.astype(int)
    tf = False if (dtype.name[:7] == 'complex') else True

    if (axis is None):
        if (len(shape) == 2):
            if (tf): array = spsn.medfilt2d(array, kernel_size)
            else:
                array = spsn.medfilt2d(
                    array.real,
                    kernel_size) + 1j * spsn.medfilt2d(array.imag, kernel_size)
        else:
            if (tf): array = spsn.medfilt(array, kernel_size)
            else:
                array = spsn.medfilt(
                    array.real,
                    kernel_size) + 1j * spsn.medfilt(array.imag, kernel_size)

    else:
        axis = int(round(axis))
        if (axis < 0): axis = len(shape) + axis
        if (axis >= len(shape)):
            Raise(
                Exception, 'axis=' + str(axis) + ' out of ' + str(len(shape)) +
                'D array.shape=' + str(shape))
        kernel_size = kernel_size[axis]
        if (shape[axis] == 1): return array

        if (len(shape) == 1):
            if (tf): array = spsn.medfilt(array, kernel_size)
            else:
                array = spsn.medfilt(
                    array.real,
                    kernel_size) + 1j * spsn.medfilt(array.imag, kernel_size)
        else:
            array = ArrayAxis(array, axis, -1)
            shape = array.shape
            array = array.reshape(np.prod(shape[:-1]), shape[-1])
            sent = array
            bcast = [kernel_size, tf]
            if (Nprocess == 1):
                array = _Multiprocess_medfilt([None, sent, bcast])
            else:
                pool = PoolFor(0, len(array), Nprocess)
                array = pool.map_async(_Multiprocess_medfilt, sent, bcast)
                array = np.concatenate(array, 0)

            array = array.reshape(shape)
            array = ArrayAxis(array, -1, axis)

    array = array.astype(dtype)
    return array
예제 #9
0
파일: CoordTrans.py 프로젝트: jizhi/jizhipy
    def _xyzRotation(self, xyz, **kwargs):
        '''
		(x,y,z) coordinates rotation with ax,ay,az=

		xyz:
			xyz can be any shape, but must:
			x, y, z = xyz

			x = sin(theta) * cos(phi)
			y = sin(theta) * sin(phi)
			z = cos(theta)

		**kwargs:
			See self.xyzRotationMatrix()
			ax=None: means NOT rotate this axis
			(1) xyzRotation(xyz, ay=1, ax=2, az=3)
			(2) 
				ang = {'ay':1, 'ax':2, 'az':3, 'order':['ay','ax','az']}
				xyzRotation(xyz, **ang)

		return:
			Same shape and type as input xyz

			xyz_new.shape = xyz.shape+(3,)   # (3,) for x,y,z
		'''
        from jizhipy.Basic import OrderKwargs, Raise
        from jizhipy.Array import ArrayAxis, Asarray
        xyz = Asarray(xyz, True, float)
        shapexyz = xyz.shape
        if (shapexyz[0] != 3):
            Raise(Exception, 'xyz.shape=' + str(shapexyz) + ', shape[0] != 3')
        if (xyz.shape == (3, )): islistx = False
        else: islistx = True
        x, y, z = xyz
        #--------------------------------------------------
        try:
            kwargs['order']
        except:
            kwargs['order'] = OrderKwargs()
        if ('which' in kwargs.keys()):
            which = kwargs['which']
        else:
            which = 'system'
        R = self.xyzRotationMatrix(which, **kwargs)
        shapeR = R.shape
        R = ArrayAxis(R, -2, 0, 'move')  #@#@
        if (R.shape == (3, 3)): islistr = False
        else: islistr = True
        Rx, Ry, Rz = R.T
        Rx, Ry, Rz = Rx.T, Ry.T, Rz.T
        #--------------------------------------------------
        if (Rx.shape == (3, )):
            sR = Rx.shape + len(x.shape) * (1, )
            Rx, Ry, Rz = Rx.reshape(sR), Ry.reshape(sR), Rz.reshape(sR)
        try:
            xyz = x * Rx + y * Ry + z * Rz
        except:
            Raise(
                Exception, 'x.shape=' + str(x.shape) + ', Rx.shape=' +
                str(Rx.shape) + ', can NOT broadcast')
        return xyz