예제 #1
0
파일: Interp1d.py 프로젝트: jizhi/jizhipy
def Interp1d(xdata, ydata, xnew, kind='linear'):
    '''
	1D interpolation. Note that all array must be 1D
	Outside the xdata, will use  Linear interpolation

	xdata:
		must be 1D, must real

	ydata:
		must be 1D, real | complex

	xnew:
		any shape ndarray (not need to be 1D) | None
		* ==None: return def func(x) => a function

	kind:
		'linear' or 'cubic'
	'''
    import numpy as np
    from jizhipy.Array import Asarray
    xdata, ydata = Asarray(xdata).flatten(), Asarray(ydata).flatten()
    if ('complex' in ydata.dtype.name):
        yr = _Interp1d(xdata, ydata.real, xnew, kind)
        yi = _Interp1d(xdata, ydata.imag, xnew, kind)
        ynew = yr + 1j * yi
    else:
        ynew = _Interp1d(xdata, ydata, xnew, kind)
    return ynew
예제 #2
0
def LABdo(freq):
    from jizhipy.Array import Asarray
    freq = Asarray(freq)
    fmin, fmax = freq.min(), freq.max()
    if (fmax < LABfreq[0]): return False
    elif (fmin > LABfreq[1]): return False
    else: return True
예제 #3
0
def Corrcoef(x, y, axis):
    '''
	Different from np.corrcoef()
	'''
    from jizhipy.Basic import Raise
    import numpy as np
    from jizhipy.Array import Asarray
    x, y = Asarray(x), Asarray(y)
    try:
        x + y
    except:
        Raise(
            Exception, 'x.shape=' + str(x.shape) + ', y.shape=' +
            str(y.shape) + ' can NOT broadcast')
    x = x + y * 0
    y = y + x * 0
    if (axis < 0): axis += len(x.shape)
    if (axis >= len(x.shape)):
        Raise(Exception,
              'axis=' + str(axis) + ' exceeds x.shape=' + str(x.shape))
    up = ((x - x.mean(axis, keepdims=True)) *
          (y - y.mean(axis, keepdims=True))).sum(axis) / x.shape[axis]
    down = x.std(axis) * y.std(axis)
    r = up / down
    return r
예제 #4
0
파일: Beam.py 프로젝트: jizhi/jizhipy
	def _SymmetryBeam( self, which, fwhm, theta, normalized ):
		'''
		Generate any-dimension beam

		theta, fwhm:
			in rad
			Can be any shape

		normalized:
			False | 'int' | 'sum'
					'int' means 'integrate'
			False: max=1
			'sum': beam.sum()==1
			'int': (beam * dtheta).sum()==1
		
		return:
			beam, ndarray
			beam.shape = fwhm.shape + theta.shape
	
		GaussianBeam = exp{-(theta/FWHM)^2/2/sigma^2}, its max=1, not normalized.
	
		Set theta=0.5*FWHM, compute exp{-(1/2)^2/2/sigma^2}=0.5(because the max=1, theta=0.5*FWHM will decreate to half power) and get sigma^2=1/(8ln2)
	
		\int{e^(-a*x^2)dx} = (pi/a)^0.5
		So, for the normalized GaussianBeam_normalized 
		= 1/FWHM * (4ln2/pi)^0.5 * exp(-4ln2 * theta^2 / FWHM^2)
	
		SincBeam = np.sinc(2.783/np.pi * theta**2 / fwhm**2)
		'''
		import numpy as np
		from jizhipy.Array import Asarray
		from jizhipy.Basic import IsType
		islistfwhm = False if(IsType.isnum(fwhm))else True
		islisttheta = False if(IsType.isnum(theta))else True
		fwhm, theta = Asarray(fwhm), Asarray(theta)
		shapefwhm, shapetheta = fwhm.shape, theta.shape
		fwhm, theta = fwhm.flatten(), theta.flatten()
		#----------------------------------------
		which = str(which).lower()
		if (which == 'gaussian') : b = np.exp(-4*np.log(2) * theta[None,:]**2 / fwhm[:,None]**2)
		elif (which == 'sinc') : b = np.sinc(2.783/np.pi * theta[None,:]**2 / fwhm[:,None]**2)**2
		#----------------------------------------
		if (normalized is not False) : 
			if (normalized == 'int') : 
				a = 1/fwhm[:,None] *(4*np.log(2)/np.pi)**0.5
				b *= a  # for 'int'
			elif (normalized == 'sum') : 
				b /= b.sum(1)[:,None]
		#----------------------------------------
		if (not islistfwhm and not islisttheta) : 
			b = b[0,0]
		elif (not islistfwhm and islisttheta) : 
			b = b.reshape(shapetheta)
		elif (islistfwhm and not islisttheta) : 
			b = b.reshape(shapefwhm)
		else : b = b.reshape(shapefwhm + shapetheta)
		#----------------------------------------
		return b
예제 #5
0
파일: CoordTrans.py 프로젝트: jizhi/jizhipy
    def ToHealpix(self, nside, RA, Dec=None, T=None, replace=True):
        ''' 
		replace:
			=True : if there are several values in 1 pixel, use the lagest value to fill this pixel (for diffuse emission)
			=False : if there are several values in 1 pixel, fill this pixel with the sum of all values (for point sources)
	
		RA, Dec:
			in rad
			RA  or lon : 0 ~ 2pi
			Dec or lat : -pi/2 ~ pi/2
	
		if Dec=None and T=None : 
			RA, Dec, T = RA[0], RA[1], RA[2] = RA  (ROW)
		'''
        import healpy as hp
        import numpy as np
        from jizhipy.Array import Asarray
        from jizhipy.Basic import Raise
        replace = bool(replace)
        hp.nside2resol(nside)
        if (Dec is None and T is None): RA, Dec, T = RA
        RA, Dec, T = 1 * Asarray(RA).flatten(), 1 * Asarray(
            Dec).flatten(), 1 * Asarray(T).flatten()
        size = max(RA.size, Dec.size, T.size)
        if ((RA.size not in [size, 1]) or (Dec.size not in [size, 1])
                or (T.size not in [size, 1])):
            Raise(
                Exception, 'jizhipy.CoordTrans.ToHealpix(): RA.size=' +
                str(RA.size) + ', Dec.size=' + str(Dec.size) + ', T.size=' +
                str(T.size) + ' not in [' + str(size) + ',1]')
        if (RA.size == 1): RA = np.zeros(size) + RA[0]
        if (Dec.size == 1): Dec = np.zeros(size) + Dec[0]
        if (T.size == 1): T = np.zeros(size) + T[0]
        #----------------------------------------
        if (replace):
            T = np.sort(T + 1j * np.arange(size))
            n = T.imag.astype(int)
            T = T.real
            RA, Dec = RA[n], Dec[n]
        #----------------------------------------
        hpmap = np.zeros(12 * nside**2)
        pix = hp.ang2pix(nside, np.pi / 2 - Dec, RA)
        if (replace):
            hpmap[pix] = T
            return hpmap
        #----------------------------------------
        for i in range(pix.size):
            hpmap[pix[i]] += T[i]
        return hpmap
예제 #6
0
파일: CoordTrans.py 프로젝트: jizhi/jizhipy
 def _Angle(self, kwargs, orderkwargs):
     ''' degree to rad, not call directly '''
     from jizhipy.Basic import IsType
     import numpy as np
     from jizhipy.Array import Asarray
     N = len(orderkwargs)
     islist = []
     raisestr = 'Shape miss-matching, '
     for i in range(N):
         ok = orderkwargs[i]
         if (kwargs[ok] is None): kwargs[ok] = 0
         islist.append(1 - IsType.isnum(kwargs[ok]))
         kwargs[ok] = Asarray(kwargs[ok]) * np.pi / 180
         raisestr += ok + '.shape=' + str(kwargs[ok].shape) + ', '
     try:
         for i in range(N):
             oki = orderkwargs[i]
             for j in range(N):
                 okj = orderkwargs[j]
                 if (i == j): continue
                 kwargs[oki] = kwargs[oki] + kwargs[okj] * 0  # broadcast
     except:
         Raise(Exception, raisestr)
     if (np.array(islist).sum() == 0): islist = False
     else: islist = True
     return [kwargs, islist]
예제 #7
0
def Center2Edge( array ) : 
	'''
	array is the centers, return the edges
	array can be non-uniform
	'''
	from jizhipy.Array import Asarray
	array = Asarray(array)
	if (len(array.shape) != 1) : Raise(Exception, 'array must be 1D')
	step = array[1:] - array[:-1]
	n = array.size
	if ((1.*step.max()-step.min())/step.max() < 0.01) : 
		edge = np.zeros([n+1,]) + array[n-1]+step.mean()/2.
		edge[:n] = array - step.mean()/2.
		return edge
	else : 
		edge = np.zeros([n-2, n+1])
		m, j = n/2, 0
		for m in range(1, n-1) : 
			edge[j,m] = array[m] - (step[m]+step[m-1])/4.
			for i in range(m-1, -1, -1) : 
				edge[j,i] = 2*array[i] - edge[j,i+1]
			for i in range(m+1, n+1) : 
				edge[j,i] = 2*array[i-1] - edge[j,i-1]
			j = j + 1
		return edge.mean(0)
예제 #8
0
파일: PCA.py 프로젝트: jizhi/jizhipy
	def Ymap( self, ymap=None ) : 
		'''
		ymap: 
			Input y map, must be 2D array/matrix.
			y.shape = (nfreq, npix), row nfreq is the number of frequencies, column npix is the number of pixels at its frequency.
			(1) y is ndarray
			(2) y is list, len(y)==nfreq
		'''
		import numpy as np
		from jizhipy.Basic import Raise, SysFrame, IsType
		from jizhipy.Array import Asarray
		from jizhipy.Optimize import Smooth
		if (ymap is None) : 
			if (SysFrame(0,2)[-3][-2]!='') : 
				self.ymap = None
				if (self.verbose) : print('    self.y = None')
				return
			else : return self.ymap
		pstr = '    ' if ('ymap' not in self.__dict__.keys())else '    Change: ' 
		if (IsType.islist(ymap) or IsType.istuple(ymap)) : 
			if (not IsType.isnum(ymap[0])) : 
				ymap, N = list(ymap), 1e15
				for i in range(len(ymap)) : 
					if (len(ymap) < N) : N = len(ymap)
				for i in range(len(ymap)) : 
					ymap[i]=jp.Smooth(ymap[i], 0,reduceshape=N)
		self.ymap = Asarray(ymap, np.float64)  # force bit64
		if (len(self.ymap.shape) not in [1, 2]) : Raise(Exception, 'jizhipy.PCA: ymap must be 1D/2D, but now ymap.shape='+str(self.ymap.shape))
		if (self.verbose) : print(pstr+'self.ymap.shape =', self.ymap.shape)
		return self.ymap
예제 #9
0
파일: AlmReduce.py 프로젝트: jizhi/jizhipy
def AlmReduce(alm, lmax=None, mmax=None):
    '''
	alm:
		l from 0 to lmax0
		NOTE THAT input alm must be full: lmax==mmax

	lmax:
		lmax of the reduced alm
		Reduced alm's l from 0 to lmax

	mmax:
		mmax of the reduced alm
		Reduced alm's m from 0 to mmax

	if lmax=None: lmax=lmax0
	if mmax=None: mmax=mmax0
	'''
    import numpy as np
    from jizhipy.Array import Asarray
    import healpy as hp
    lmax0 = hp.Alm.getlmax(alm.size)
    mmax0 = hp.Alm.getidx(lmax0, 1, 1) - 1
    lmax = lmax0 if (lmax is None) else int(lmax)
    mmax = mmax0 if (mmax is None) else int(mmax)
    l, m = hp.Alm.getlm(lmax0)
    tf = (l <= lmax) * (m <= mmax)
    alm = Asarray(alm)[tf]
    return alm
예제 #10
0
파일: CoordTrans.py 프로젝트: jizhi/jizhipy
    def xyz2thetaphi(self, xyz):
        '''
		xyz:
			Can be any shape, but must:
			x, y, z = xyz

		return:
			thetaphi = [theta, phi]
			in rad (NOT degree)
			theta.shape = phi.shape = x.shape

		theta: 0--np.pi
		phi: 0--2*np.pi
		'''
        from jizhipy.Basic import Print, IsType
        import numpy as np
        x, y, z = xyz
        if (IsType.isnum(x)): islistx = False
        else: islistx = True
        if (IsType.isnum(y)): islisty = False
        else: islisty = True
        if (IsType.isnum(z)): islistz = False
        else: islistz = True
        islist = bool(islistx + islisty + islistz)
        x, y, z = Asarray(x), Asarray(y), Asarray(z)
        r = (x**2 + y**2 + z**2)**0.5
        r[r == 0] = 1e-30
        x, y, z = x / r, y / r, z / r
        #--------------------------------------------------
        # theta from 0 to 180, sin(theta) >=0
        theta = np.arccos(z)  # 0 to 180 degree
        zero = (np.sin(theta) == 0)
        sign = np.sign(z[zero])
        theta[zero] += 1e-30
        del z
        #	Print.WarningSet(False)
        x = x / np.sin(theta)
        y = y / np.sin(theta)
        #	Print.WarningSet(True)
        x = x + 1j * y
        del y
        phi = np.angle(x) % (2 * np.pi)
        theta[zero] -= 1e-30
        if (zero.sum() > 0): phi[zero] = np.pi / 2 - sign * np.pi / 2
        if (not islist): theta, phi = theta[0], phi[0]
        return np.array([theta, phi]) % (2 * np.pi)
예제 #11
0
def Edge2Center( array ) : 
	'''
	array is the edges, return the centers
	array can be non-uniform.
	'''
	from jizhipy.Array import Asarray
	array = Asarray(array)
	if (len(array.shape) != 1) : Raise(Exception, 'array must be 1D')
	step = array[1:] - array[:-1]
	return array[:-1] + step/2.
예제 #12
0
파일: CoordTrans.py 프로젝트: jizhi/jizhipy
    def _RAlDecb(self, RAl, Decb):
        '''
		Make RAl and Decb can broadcast
		return:
			[RAl, Decb, islist]
		'''
        from jizhipy.Basic import IsType
        from jizhipy.Array import Asarray
        if (IsType.isnum(RAl) and IsType.isnum(Decb)):
            islist = False
        else:
            islist = True
        RAl, Decb = Asarray(RAl), Asarray(Decb)
        try:
            RAl = RAl + Decb * 0
            Decb = RAl * 0 + Decb
        except:
            Raise(
                Exception, 'RAl.shape=' + str(RAl.shape) + ', Decb.shape=' +
                str(Decb.shape) + ', can NOT broadcast')
        return [RAl, Decb, islist]
예제 #13
0
파일: SciNot.py 프로젝트: jizhi/jizhipy
def SciNot( array ) : 
	'''
	Scientific Notation.
	value can be scale(int/float), list/n-D array
	Return [a, n], value = a * 10**n
	'''
	from jizhipy.Basic import IsType
	import numpy as np
	from jizhipy.Array import Asarray
	if (IsType.isint(array) or IsType.isfloat(array)) : islist = False
	else : islist = True
	array = Asarray(array)
	# Flatten
	shape = array.shape
	array = array.flatten()
	# Get the sign
	sign = np.sign(array)  # sign(0)=0
	# Convert to abs
	array = abs(array)
	# because sign(0)=0, convert 0 to 1
	array[array==0] = 1
	nlarge, nsmall = (array>=1), (array<1)  # bool, not int
	# Use log10 to get the power index
	# >=1
	if (nlarge.sum() > 0) : idxlarge = np.log10(array[nlarge]).astype(int)
	else : idxlarge = []
	# <1
	if (nsmall.sum() > 0) : 
		scalesmall = int(round(np.log10(array[nsmall].min())))-2
		array[nsmall] /= 10.**scalesmall
		idxsmall = np.log10(array[nsmall]).astype(int) + scalesmall
		array[nsmall] *= 10.**scalesmall
	else : idxsmall = []
	# valid and idx
	idx = np.zeros(array.size, int)
	idx[nlarge], idx[nsmall] = idxlarge, idxsmall
	valid = sign * (array / 10.**idx)
	valid, idx = valid.reshape(shape), idx.reshape(shape)
	if (islist) : return (valid, idx)
	else : return (valid[0], idx[0])
예제 #14
0
def Bar(x, y, align='edge', *args, **kwargs):
    '''
	matplotlib.pyplot.bar(x, y, ...)

	align:
		'edge': x=>xe
		'center': x=>xc
	'''
    from jizhipy.Plot import Gca
    if ('ax' in kwargs.keys()):
        ax = kwargs['ax']
        kwargs.pop('ax')
    else:
        ax = Gca()
    if (align == 'center'):
        ax.bar(x, y, align='center', *args, **kwargs)
        return ax
    from jizhipy.Array import Asarray
    xe, y = Asarray(x), Asarray(y)
    width = xe[1:] - xe[:-1]
    ax.bar(xe[:-1], y, width, align='edge', *args, **kwargs)
    return ax
예제 #15
0
파일: Gaussian.py 프로젝트: jizhi/jizhipy
	def GaussianSolidAngle( self, fwhmx, fwhmy=None ) : 
		'''
		fwhmx, fwhmy: 
			in rad
			Can be any shape, but must can broadcast
	
		return: 
			solid_angle =GaussianSolidAngle(fwhmx, fwhmy) in sr
		'''
		from jizhipy.Basic import IsType
		from jizhipy.Array import Asarray
		import numpy as np
		fwhmx, fwhmy = Asarray(fwhmx,True), Asarray(fwhmy,True)
		if (fwhmy is None) : fwhmy = fwhmx
		fwhmx = fwhmx + 0*fwhmy  # broadcast
		fwhmy = 0*fwhmx + fwhmy
		isnum = IsType.isnum(fwhmx) + IsType.isnum(fwhmy)
		if (isnum == 2) : return self._GaussianSolidAngle(fwhmx, fwhmy)
		shape = fwhmx.shape
		fwhmx, fwhmy = fwhmx.flatten(), fwhmy.flatten()
		solid_angle = np.zeros(fwhmx.size)
		for i in range(fwhmx.size) : 
			solid_angle[i] = self._GaussianSolidAngle(fwhmx[i], fwhmy[i])
		return solid_angle.reshape(shape)
예제 #16
0
파일: PoolFor.py 프로젝트: jizhi/jizhipy
    def __init__(self,
                 Nstart=None,
                 Nend=None,
                 Nprocess=None,
                 nsplit=None,
                 thread=False,
                 verbose=False):
        '''
		(1) PoolFor( Nstart, Nend, Nprocess )
				use Nstart, Nend, Nprocess to calculate nsplit
				split send in self.map_async()
		(2) PoolFor( nsplit )
				use this nsplit
				split send in self.map_async()
		(3) PoolFor()
			don't split send in self.map_async(), send has been splitted when gived to self.map_async(splitted_send, bcast)
				send[0] for process-1
				send[1] for process-2
				......
				send[n] for process-n+1
		'''
        import numpy as np
        from jizhipy.Array import Asarray
        self.verbose, self.thread = bool(verbose), bool(thread)
        self.zero, self.splitsend = False, True
        if ((Nstart is None or Nend is None) and nsplit is None):
            self.splitsend = False
            return
        #--------------------------------------------------
        if (nsplit is not None):
            Nprocess, NprocessTot, threads, cores, Ncpu, hyper, cpuinfo = NprocessCPU(
                len(nsplit))
        #--------------------------------------------------
        else:
            if (Nend - Nstart <= 0):
                Raise(Warning,
                      'Nend-Nstart=' + str(Nend - Nstart) + '<=0, return None')
                self.zero = True
                return
            Nprocess, NprocessTot, threads, cores, Ncpu, hyper, cpuinfo = NprocessCPU(
                Nprocess)
            if (Nend - Nstart < Nprocess): Nprocess = Nend - Nstart
            # nsplit
            nsplit = np.linspace(Nstart, Nend, Nprocess + 1).astype(int)
            nsplit = np.array([nsplit[:-1], nsplit[1:]]).T
        #--------------------------------------------------
        self.Nprocess, self.nsplit = Nprocess, Asarray(nsplit)
        self.Nmax = (self.nsplit[:, 1] - self.nsplit[:, 0]).max()
예제 #17
0
def ArrayAxis(array, axis1, axis2, act='move'):
    '''
	array:
		Any dimension array (real, complex, masked)

	axis1, axis2, act:
	  act='move': old a[axis1] becomes new b[axis2]
		a.shape=(2,3,4,5,6)
		b = ArrayAxis(a, 3, 1, 'move')
		b.shape=(2,5,3,4,6)
	  act='exchange' : exchange a[axis1] with a[axis2]
		a.shape=(2,3,4,5,6)
		b = ArrayAxis(a, 3, 1, 'exchange')
		b.shape=(2,5,4,3,6)
	'''
    import numpy as np
    from jizhipy.Array import Asarray
    from jizhipy.Basic import Raise, IsType
    ismatrix = IsType.ismatrix(array)
    array = Asarray(array)
    shapeo = array.shape
    if (len(shapeo) <= 1): return array
    if (axis1 < 0): axis1 = len(shapeo) + axis1
    if (axis2 < 0): axis2 = len(shapeo) + axis2
    if (axis1 == axis2): return array
    if (axis1 >= len(shapeo) or axis2 >= len(shapeo)):
        Raise(
            Exception, 'axis1=' + str(axis1) + ', axis2=' + str(axis2) +
            ' out of array.shape=' + str(shapeo) + '=>' + str(len(shapeo)) +
            'D')
    if (len(shapeo) == 2): return array.T
    if (len(shapeo) == 3
            and ((axis1 == 0 and axis2 == 2) or (axis1 == 2 and axis2 == 0))
            and act.lower() == 'exchange'):
        return array.T
    #--------------------------------------------------
    axis = list(range(len(shapeo)))
    if (act.lower() == 'move'):
        axis.remove(axis1)
        axis = axis[:axis2] + [axis1] + axis[axis2:]
    elif (act.lower() == 'exchange'):
        axis[axis1] = axis2
        axis[axis2] = axis1
    array = np.transpose(array, axis)
    if (ismatrix): array = np.matrix(array)
    return array
예제 #18
0
파일: Beam.py 프로젝트: jizhi/jizhipy
	def FeedBeam( self, *args, **kwargs ) : 
		'''
		each beam of feed OR combined beam of pair, depending on self.feedpos and self.baseline

		For baseline case, self.beam must be real, NOT complex

		*args: give fwhm: 
			in [rad]
			(1) 1 value: all beam are the same
					args = (1, )
			(2) fwhm.size = Nfeed: each feed has its fwhm
					args = (1, 2, 3, 4, ...)

		**kwargs:
			sqrt=True: return beam**0.5
			Default  : return power beam

		(1) FeedBeam(): Uniform beam
		(2)	FeedBeam(fwhm): GaussianBeam, NOT SincBeam
		(3) FeedBeam(fwhm1, fwhm2): EllipticGaussianBeam

		self.beam
			(case 1) =1
			(case 2) .shape = (1, N_incident_direction)
			(case 3) .shape = (Nfeed/Nbl, N_incident_direction)
		'''
		import numpy as np
		from jizhipy.Array import Asarray
		from jizhipy.Basic import IsType, Raise
		from jizhipy.Astro import Beam
		if (len(args) == 0 or args[0] is None) : 
			self.beam = 1
			return
		if ('thetaphi' not in self.__dict__.keys()) : Raise(Exception, 'NOT exists  self.thetaphi,  set it by SyntheticBeam.WaveVector()')
		if (len(args) == 1) : fwhm1 = fwhm2 = Asarray(args[0])
		else : fwhm1, fwhm2 = args[:2]
		self.beam = []
		for i in range(len(fwhm1)) : 
			self.beam.append( Beam.EllipticGaussianBeam(fwhm1[i], fwhm2[i], self.thetaphi[0], self.thetaphi[1]) )
		self.beam = np.array(self.beam)
		if ('sqrt' in kwargs.keys() and kwargs['sqrt']) : 
			self.beam = abs(self.beam)**0.5
		return self.beam
예제 #19
0
 def lcm(self, *args):
     ''' lcm: lowest common multiple '''
     import numpy as np
     from jizhipy.Basic import Raise, IsType
     from jizhipy.Array import Asarray
     a = []
     for i in range(len(args)):
         a.append(Asarray(args[i]).flatten())
     a = np.concatenate(a)
     if (not IsType.isint(a[0])):
         Raise(
             Exception,
             'jizhipy.CommonFactor.lcm(): input number must be "int", but now is "'
             + a.dtype.name + '"')
     a = a[a > 0]
     if (a.size == 0): return 1
     elif (a.size == 1): return 1
     b = a.prod() / a
     v = self.gcd(b)
     v = a.prod() / v
     return v
예제 #20
0
파일: Sort.py 프로젝트: jizhi/jizhipy
def Sort( array, along='[0,:]', l2s=False ) : 
	'''
	array:
		Can be any shape

	along:
		Must as format like '[n1,n2,:,n4]'
		Must have ':', use [2,:] instead of [2]
		array[n1,n2,:,n4] must 1D so that we can sort along this
		along=[:,2] : second column

		'[0,:]' => 0-row
		'[:,0]' => 0-column

	l2s: 
		l2s=False: from small to large (default)
		l2s=True : from large to small
	'''
	import numpy as np
	from jizhipy.Array import Asarray, ArrayAxis
	along = along[1:-1].split(',')
	axis = along.index(':')
	along.pop(axis)
	along = np.array(along, int)
	#--------------------------------------------------
	array = Asarray(array)
	if (len(array.shape) == 1) : 
		array = np.sort(array)
		if (l2s) : array = array[::-1]
		return array
	#--------------------------------------------------
	if (array.shape[axis] == 1) : return array
	array = ArrayAxis(array, axis, -1, 'move')
	shape = array.shape
	#--------------------------------------------------
	cumprod = np.cumprod((shape[1:-1]+(1,))[::-1])[::-1]
	along = (along*cumprod).sum()
	a = array.reshape(np.prod(shape[:-1]), shape[-1])[along]
	#--------------------------------------------------
	a = a + 1j*np.arange(a.size)
	a = np.sort(a).imag.astype(int)
	if (l2s) : a = a[::-1]
	#--------------------------------------------------
	array = ArrayAxis(array, -1, 0, 'move')
	array = array[a]
	array = ArrayAxis(array, 0, axis, 'move')
	return array
예제 #21
0
def ArraySplit( array, axis, which ) : 
	'''	
	axis:
		split along which axis

	which:
		=='1G' | '1GB'
		==int
	'''
	import numpy as np
	from jizhipy.Array import Asarray, ArrayAxis, Repection
	from jizhipy.Basic import IsType
	array = Asarray(array)
	if (IsType.isint(which)) : mem, N = None, which
	elif (IsType.isstr(which)) : 
		which = str(which).lower()
		if ((which[-1]=='g' and which[-2] in '0123456789')) : mem = float(which[:-1])
		elif ((which[-2:]=='gb' and which[-3] in '0123456789')) : mem = float(which[:-2])  # GB
	else : 
		array = ArrayAxis(array, axis, 0, 'move')
		array = array[None,:]
		array = ArrayAxis(array, 0, axis+1, 'move')
		return array
	#--------------------------------------------------
	if (mem is not None) : 
		bit, n = array.dtype.name, 0
		while (bit[n] not in '0123456789') : n += 1
		bit = float(bit[n:])
		size = array.size
		memtot = size / 1e8 * 0.8 * bit/64
		N = int(memtot / mem) + 1
	m = np.linspace(0, array.shape[axis], N+1).astype(int)
	m = Repetition(m, renon=True)
	b = []
	array = ArrayAxis(array, axis, 0, 'move')
	for i in range(len(m)-1) : 
		a = ArrayAxis(array[m[i]:m[i+1]], 0, axis)
		b.append(a)
	return b
예제 #22
0
 def gcd(self, *args):
     ''' gcd: greatest  common divisor '''
     import numpy as np
     from jizhipy.Basic import Raise, IsType
     from jizhipy.Array import Asarray
     a = []
     for i in range(len(args)):
         a.append(Asarray(args[i]).flatten())
     a = np.concatenate(a)
     if (not IsType.isint(a[0])):
         Raise(
             Exception,
             'jizhipy.CommonFactor.gcd(): input number must be "int", but now is "'
             + a.dtype.name + '"')
     a = abs(a.astype(float))
     a = a[a > 0]
     if (a.size == 0): return 1
     elif (a.size == 1): return int(a[0])
     vmin = int(a.min())
     for v in range(vmin, 0, -1):
         b = a / v
         b = abs(b - b.astype(int)).sum()
         if (b < 1e-6): break
     return v
예제 #23
0
파일: Beam.py 프로젝트: jizhi/jizhipy
	def EllipticGaussianBeam( self, fwhm1, fwhm2, theta, phi, normalized=False ) : 
		'''
		theta, phi, fwhm1, fwhm2:
			in rad
			theta.shape == phi.shape, can be any shape
			fwhm1.shape == fwhm2.shape, can be any shape
		'''
		import numpy as np
		from jizhipy.Array import Asarray
		from jizhipy.Basic import Raise, IsType
		if (IsType.isnum(fwhm1)) : islistfwhm1 = False
		else : islistfwhm1 = True
		if (IsType.isnum(fwhm2)) : islistfwhm2 = False
		else : islistfwhm2 = True
		islistfwhm = bool(islistfwhm1 + islistfwhm2)
		if (IsType.isnum(theta)) : islisttheta = False
		else : islisttheta = True
		if (IsType.isnum(phi)) : islistphi = False
		else : islistphi = True
		islisttheta = bool(islisttheta + islistphi)
		fwhm1, fwhm2, theta, phi = Asarray(fwhm1), Asarray(fwhm2), Asarray(theta), Asarray(phi)
		shape1, shape2, shapet, shapep = fwhm1.shape, fwhm2.shape, theta.shape, phi.shape
		printstr = 'fwhm1.shape='+str(shape1)+', fwhm2.shape='+str(shape2)+', theta.shape='+str(shapet)+', phi.shape='+str(shapep)
		if (shape1 != shape2) : Raise(Exception, 'fwhm1.shape != fwhm2.shape. '+printstr)
		if (shapet != shapep) : Raise(Exception, 'theta.shape != phi.shape. '+printstr)
		#--------------------------------------------------
		fwhm1, fwhm2, theta, phi = fwhm1.flatten(), fwhm2.flatten(), theta.flatten(), phi.flatten()
		b = np.exp(-4*np.log(2) * theta[None,:]**2 * ((np.cos(phi[None,:])/fwhm1[:,None])**2 + (np.sin(phi[None,:])/fwhm2[:,None])**2))
		if (normalized) : 
			a = 4*np.log(2) * ((np.cos(phi[None,:])/fwhm1[:,None])**2 + (np.sin(phi[None,:])/fwhm2[:,None])**2)
			b = b/(np.pi/a)**0.5
			a = 0 #@
		#--------------------------------------------------
		if (not islistfwhm and not islisttheta) : b = b[0,0]
		elif (not islistfwhm and islisttheta) : 
			b = b.reshape(shapet)
		elif (islistfwhm and not islisttheta) : 
			b = b.reshape(shape1)
		else : b = b.reshape(shape1 + shapet)
		return b
예제 #24
0
    def ProbabilityDensity(self,
                           randomvariable,
                           bins,
                           weight=None,
                           wmax2a=None,
                           nsigma=6,
                           density=True):
        '''
		Return the probability density or number counting of array.
		Return:
			[xe, xc, y]
			xe is the edge of the bins.
			xc is the center of the bins.
			y  is the probability density of each bin, 

		
		randomvariable==array:
			Input array must be flatten()
	
		bins:
			(1) ==list/ndarray with .size>3: 
				** Then ignore  brange, weight, wmax2a
				use this as the edge of the bins
				total number of the bins is bins.size-1 (x.size=bins.size, xc.size=bins.size-1)
			(2) ==list/ndarray with .size==3
				** nbins, bmin, bmax = bins
				nbins: number of bins
				bmin, bmax: min and max of bins, NOT use the whole bin
			(3) ==int_number:
				** Then use weight and wmax2a
				Give the total number of the bins, in this case, x.size=bins+1, xc.size=bins

		weight:
			** Use this only when bins==int_number
			'G', 'K0' | None | ndarray with size=bins
			(1) ==None: each bin has the same weight => uniform bins
			(2) ==ndarray: give weights to each bins
			(3) =='G': use Gaussian weight
			    =='K0': use modified Bessel functions of the second kind

		wmax2a:
			** Use this only when bins==int_number and weight is not None
			float | None
			(1) ==None: means weight[0]=>bins[0], weight[1]=>bins[1], weight[i]=>bins[i]
			(2) ==float: 
				uniform bin b = np.linspace(array.min(), array.max(), bins+1)
				value wmax2a is in nb-th bin: b[nb] <= wmax2a <= b[nb+1]
				weight.max() => weight[nmax]
				!!! Give weight[nmax] to the bin b[nb] (then reorder the weight array)
		
		nsigma:
			float | None (use all data)
			When generate the bins, won't use the whole range of array, set nsigma, will throw away the points beyond the mean
	
		density:
			If True, return the probability density = counting / total number / bin width
			If False, return the counting number of each bin

		Return:
			[xe, xc, y]
			xe is the edge of the bins.
			xc is the center of the bins.
			y  is the probability density of each bin, 
		'''
        import numpy as np
        from jizhipy.Process import Edge2Center
        from jizhipy.Array import Asarray
        #---------------------------------------------
        # nsigma
        # Throw away the points beyond the mean
        try:
            nsigma = float(nsigma)
        except:
            nsigma = None
        array = Asarray(randomvariable).flatten()
        sigma, mean = array.std(), array.mean()
        if (nsigma is not None):
            array = array[(mean - nsigma * sigma <= array) *
                          (array <= mean + nsigma * sigma)]
        amin, amax = array.min(), array.max()
        #---------------------------------------------
        if (Asarray(bins).size <= 3):
            bins = self.Bins(array, bins, weight, wmax2a, None)
        bins = Asarray(bins)
        #---------------------------------------------
        bins = bins[bins >= amin]
        bins = bins[bins <= amax]
        tf0, tf1 = False, False
        if (abs(amin - bins[0]) > 1e-6):
            bins = np.append([amin], bins)
            tf0 = True
        if (abs(amax - bins[-1]) > 1e-6):
            bins = np.append(bins, [amax])
            tf1 = True
        #---------------------------------------------
        y, bins = np.histogram(array, bins=bins, density=density)
        if (tf0): y, bins = y[1:], bins[1:]
        if (tf1): y, bins = y[:-1], bins[:-1]
        x = Edge2Center(bins)
        return [bins, x, y]
예제 #25
0
파일: Gaussian.py 프로젝트: jizhi/jizhipy
	def GaussianFilter( self, per=None, times=None, std=None, shape=None ) : 
		'''
		std(pixel) = fwhm(pixel) / (8*ln2)**0.5

		return: [gaussianfilter, std]
			Unit for std: pixel
			When use this std, x must pixel: np.arange(...)
		return normalized beam.sum()=1

		gf1, s1 = GaussianFilter(per, times)
		gf2, s2 = GaussianFilter(None, None, s1, gf1.size)
		gf3=GaussianValue(np.arange(gf1.size), gf1.size/2, s1)
			gf1==gf2==gf3,  s1==s2

		NOTE THAT must be GaussianFilter.sum()==1
			can NOT be other value

		Case 1: per, times, shape
			(1) Use per, times to generate gaussianfilter
					gaussianfilter.size = (per-1) * times + 1
			(2) Use shape to reshape gaussianfilter

		Case 2: std, shape
			Use std, shape to generate gaussianfilter

		First use case 1, otherwise use case 2

		shape: 
			(1) Use per, times, shape
				1. shape in [None, '1D']: 1D with original size
				2. shape isint: 1D with .size=shape
				3. shape == '2D': 1D with original size^2
				4. shape == (int, int, ...): N-D filter, std=(axis0, axis1, ...)
			(2) Use std, shape
				1. shape isint: 1D with .size=shape
				2. shape == (int, int, ...): N-D filter, std=(axis0, axis1, ...)
		'''
		from jizhipy.Optimize import GaussianFilter, Smooth
		from jizhipy.Basic import IsType
		import numpy as np
		from jizhipy.Array import Asarray
		if (per is not None and times is not None) : case = 1
		else : case = 2
		if (shape is None) : shape = ['']
		elif (IsType.isstr(shape)) : shape = ['' for i in range(int(shape[:-1]))]
		else : shape = Asarray(shape, int).flatten()
		#------------------------------------
		filt, sigma = [], []
		for i in range(len(shape)) : 
			if (case == 1) : 
				f, s = GaussianFilter(per, times)
				if (shape[i] != '') : f = Smooth(f, 0, reduceshape=shape[i])
			if (case == 2) : 
				f, s =GaussianFilter(None, None, std, shape[i])
			filt.append(f)
			sigma.append(s)
		#------------------------------------
		nd = len(shape)
		if (nd == 1) : filt, std = filt[0], sigma[0]
		else : 
			std = np.array(sigma)
			for i in range(nd) : 
				shape = [1 for j in range(nd)]
				shape[i] = filt[i].size
				filt[i] = filt[i].reshape(shape)
			for i in range(1, nd) : filt[0] = filt[0]*filt[i]
			filt = filt[0]
		return [filt, std]
예제 #26
0
파일: PoolFor.py 프로젝트: jizhi/jizhipy
    def map_async(self, func, send=None, bcast=None):
        '''
		If use apply() or map(), we can stop the pool program with Ctrl-c. However, if use apply_async().get(xxx) or map_async().get(xxx), we can use Ctrl-c to stop the program at any time.

		iterable:
			iterable[0] = [(n1,n2), (Nprocess, rank, pid)]

		func:
			_DoMultiprocess()

		send:
			(1) None
			(2) list/tuple. For this case, send[0], send[1], ... are different array, will split send[i] into Nprocess pieces, NOT split send !!!
			(3) 2D-ndarray: send[i] for ranks
				a, b = iterable[1] | a = iterable[1][0] (one array, must give[0])
			If is tuple/list, means each element is one array (note that must be 2D, and split along axis=0/row)
			If not tuple/list, means the send is an unity: send = Asarray(send)
			If is 2D array, will split along axis-0 (row)

		bcast:
			None or tuple or others/as a unity
			If is others, may bcast = (bcast,)
			Some data which will be broadcasted to each processes, such as the x and p0 in test_multiprocess_poolfor_class-func.py
			Must be tuple: (x, p0, ...)

		get:
			get=True: pool.map_async(func,iterable).get(10**9)
			get=False: pool.map_async(func,iterable)
		'''
        if (self.zero): return
        import numpy as np
        from jizhipy.Array import Asarray
        if (self.splitsend):  # Main here
            istuple = True
            if (type(send) != tuple and type(send) != list):
                send, istuple = (Asarray(send), ), False
            iterable, nsl = list(self.nsplit), self.nsplit
            for i in range(len(nsl)):
                iterable[i] = [[iterable[i], [self.Nmax, i]]]
                sendtmp = ()
                for j in range(len(send)):
                    if (send[j] is None): sendtmp += (None, )
                    else: sendtmp += (send[j][nsl[i][0]:nsl[i][1]], )
                if (not istuple): sendtmp = sendtmp[0]
                iterable[i] += [sendtmp, bcast]
        #--------------------------------------------------
        else:
            if (send is not None):
                self.Nprocess = len(send)
                iterable = []
                Nmax = 0
                for i in range(len(send)):
                    try:
                        if (len(send[i]) > Nmax): Nmax = len(send[i])
                    except:
                        pass
                for i in range(len(send)):
                    iterable.append([[[None, None], [Nmax, i]], send[i],
                                     bcast])
            else:
                self.Nprocess = 1
                iterable = [[[[None, None], [1, 0]], None, bcast]]
        #--------------------------------------------------
        cpuinfo = NprocessCPU()[-1]
        if (self.verbose):
            print('Open ' + str(self.Nprocess) + ' processes \n' + cpuinfo)
        #	if (not self.thread) :
        #		import multiprocessing
        #		pool = multiprocessing.Pool(self.Nprocess)
        #	else :
        #		from multiprocessing.pool import ThreadPool
        #		pool = ThreadPool(self.Nprocess)
        import multiprocessing
        pool = multiprocessing.Pool(self.Nprocess)
        for i in range(len(iterable)):
            iterable[i][0][1].append(str(pool._pool[i].pid))
        self.data = pool.map_async(func, iterable).get(10**9)
        pool.close()
        pool.join()
        return self.data
예제 #27
0
파일: Time.py 프로젝트: jizhi/jizhipy
def Time(current=None,
         ephemtime=None,
         sec1970=None,
         timezone=None,
         which=None,
         datelist=None):
    '''
	(1) Return local/system timezone (int)
		** Time( timezone=True )
		timezone >=0:east, <0:west

	(2) Convert ephemtime to sec1970 with timezone
		** Time(ephemtime='2016/10/25 16:39:24.68', timezone=8)

	(3) Convert ephemtime from timezonein to timezoneout
		** Time( ephemtime='2016/10/25 16:39:24.68', timezone=[8, 5] )

	(4) Convert sec1970 to ephemtime with timezone
		** Time( sec1970=1477411200.729252, timezone=8, which=)

	(5) Calculate time interval between two ephemtimes
		** Time( ephemtime=['2016/10/25 16:39:24.68', '2016/11/25 18:49:54.37'], which=0/1 )
			which=0: return h:m:s     which=1: return second
		return (ephemtime2 - ephemtime1)

	(6) Return current-time with timezone WITH/WITHOUT Daylight Saving Time
		** Time( current=0/1/2/3/4/5, timezone=8, daylight=True/False )

	(7) Date list ['2010-10-01', '2010-11-01', ...]
		** Time( datelist=['2010-10-01', how, length] )
		how: 2 case: '+3d'/'-3d' | '+3D'/'-3D'
			'+3d': add 3 days
			'+3D': each months' date 3: 2018-01-03, 2018-02-03, 2018-03-03, 2018-04-03, ...
			** Similar: 
				'+3m', '-3m': month
				'+3y', '-3y': year
				'+3M', '-3M': each years' March
		how must be str, not list, default '+1d'
		length: int, the length of return list
		** Time( datelist=['2004-02-25', '+1d', 10] )
		** Time( datelist=['2004-02-25', '+1D', 10] )

	(8) Time() = time.time()
	'''
    import numpy as np
    from jizhipy.Array import Asarray
    from jizhipy.Basic import IsType
    # (1) Time(timezone=True)
    if (timezone is True):
        return _Time('timezone')
        #----------------------------------------
    elif (IsType.isstr(ephemtime)):
        # (2) Time(ephemtime='2019/02/15 18:54:29.7')
        if (timezone is None): return _Time(ephemtime)
        timezone = Asarray(timezone, int).flatten()
        if (timezone.size == 1):
            return _Time(ephemtime, timezone[0])
            #----------------------------------------
            # (3) Time(ephemtime='2019/02/15 18:54:29.7', timezone=[0,8])
        else:
            return _Time(ephemtime, timezone[0], timezone[1])
    #----------------------------------------
    # (4) Time(sec1970=1550228069.8, timezone=?, which=0/1)


#	elif (sec1970 is not None and IsType.isnum(timezone)) : return _Time(sec1970, timezone, which)
    elif (sec1970 is not None):
        return _Time(sec1970, timezone, which)
        #----------------------------------------
        # (5)
    elif (ephemtime is not None):
        return _Time(ephemtime[0], ephemtime[1], which)
        #----------------------------------------
        # (6)
    elif (IsType.isnum(current)):
        daylight = False if (which is True) else True
        return _Time(current, timezone, daylight)
    #----------------------------------------
    # (7)
    elif (datelist is not None):
        date, how, N = datelist[:3]
        date, how, N = str(date), str(how), int(N)
        datein = date
        if ('/' in date): s, date = '/', date.split('/')
        elif ('-' in date): s, date = '-', date.split('-')

        #----------------------------------------
        def Case1(date, how, N):
            datelist = []
            if ('y' in how):
                year = int(date[0]) + np.arange(1, N) * int(how[:-1])
                for y in year:
                    datelist.append(str(y) + s + date[1] + s + date[2])
            elif ('m' in how):
                m = int(date[1]) + np.arange(1, N) * int(how[:-1])
                year = m / 12
                month = m % 12
                tf = month == 0
                month[tf] = 12
                year[tf] -= 1
                for i in range(len(m)):
                    m = str(month[i])
                    if (len(m) == 1): m = '0' + m
                    datelist.append(
                        str(int(date[0]) + year[i]) + s + m + s + date[2])
            elif ('d' in how):
                ephemtime = date[0] + '/' + date[1] + '/' + date[2]
                if (':' not in ephemtime): ephemtime += ' 12:00:00'
                second = 24 * 3600 * np.arange(1, N) * int(how[:-1])
                sec1970 = _Time(ephemtime) + second
                for i in range(len(sec1970)):
                    ephemtime = _Time(sec1970[i]).split(' ')[0]
                    if (s == '/'): datelist.append(ephemtime)
                    else:
                        ephemtime = ephemtime.split('/')
                        datelist.append(ephemtime[0] + s + ephemtime[1] + s +
                                        ephemtime[2])
            return datelist

        #----------------------------------------
        if (how[-1] in 'dmy'):
            return [datein] + Case1(date, how, N)
        else:
            if ('M' in how):
                date[1] = how[1:-1]
                if (len(date[1]) == 1): date[1] = '0' + date[1]
                return [datein] + Case1(date, how[0] + '1y', N)
            elif ('D' in how):
                if (':' not in date[2]): date[2] = how[1:-1]
                else: date[2] = how[1:-1] + date[2].split(' ')[1]
                if (len(date[2]) == 1): date[2] = '0' + date[2]
                return [datein] + Case1(date, how[0] + '1m', N)
    #----------------------------------------
    else:
        import time
        return time.time()
예제 #28
0
    def _fmtTick(self,
                 xy,
                 which,
                 fmt=None,
                 sep=None,
                 direction=None,
                 length=None,
                 width=None,
                 color=None,
                 left=True,
                 right=False,
                 bottom=True,
                 top=False,
                 ax=None):
        '''
		Set Tick automatically

		Tick means the vertical lines on x-axis and parallel lines on y-axis
		
		xy:
			'x' | 'y' | 'both'

		which:
			'major' | 'minor' | 'both'

		sep:
			separation of ticks
			pair [0.1, 0.05] for [major, minor]
			one value 0.1 for major

		fmt:
			(1) 'str' like '%i', '%.3f', '%6.3f'
			(2) ==None: use plt.?ticks(sep[?][0], sep[?][1]) according to xy

		direction:
			'in' | 'out' | 'inout'

		length, width, color:
			of ticks' size  (length=8, width=1)

		left, right, bottom, top:
			True/False | 'on'/'off'
			Turn on/off the ticks

		ax:
			(1) can be =='cbar' | 'colorbar'
		'''
        from matplotlib.ticker import MultipleLocator, FormatStrFormatter
        import numpy as np
        from jizhipy.Array import Asarray
        import matplotlib.pyplot as plt
        from jizhipy.Basic import IsType
        if (fmt is not None):
            try:
                fmt % 0
            except:
                fmt = '%.1f'
        ax = self._gca(ax)
        #---------------------------------------------
        if (IsType.iscbar(ax)):
            vmin, vmax = ax.get_clim()
            sep = Asarray(sep)[0]
            amin = int(vmin / sep) * sep
            amax = int(vmax / sep + 1) * sep
            ticks = np.arange(amin, amax + sep / 2., sep)
            ticks = ticks[(vmin <= ticks) * (ticks <= vmax)]
            ticklabels = []
            for i in range(ticks.size):
                ticklabels.append(fmt % ticks[i])
            ax.set_ticks(ticks)
            ax.set_ticklabels(ticklabels)
            return
        #---------------------------------------------
        xy = self._gxy(xy)
        if (IsType.isstr(which)):
            which = str(which).lower()
            if (which == 'both'): which = 'majorminor'
        kwargs = {
            'direction': direction,
            'left': left,
            'right': right,
            'bottom': bottom,
            'top': top
        }
        if (color is not None): kwargs['color'] = color
        if (length is not None): kwargs['length'] = length
        if (width is not None): kwargs['width'] = width
        #---------------------------------------------
        if (sep is not None and fmt is None):
            dopltticks = True
            if (xy == 'x'): sep = [sep]
            if (xy == 'y'): sep = [None, sep]
        else: dopltticks = False
        #---------------------------------------------
        if ('major' in which):
            if (not dopltticks):
                try:
                    sep = Asarray(sep, float)[:2]
                    loc = sep[0]
                    loc = MultipleLocator(loc)
                    fmt = FormatStrFormatter(fmt)
                except:
                    pass
            if ('x' in xy):
                if (not dopltticks):
                    try:
                        ax.xaxis.set_major_locator(loc)
                        ax.xaxis.set_major_formatter(fmt)
                    except:
                        pass
                else:
                    ax.set_xticks(sep[0][0])
                    ax.set_xticklabels(sep[0][1])
                ax.tick_params(axis='x', which='major', **kwargs)
            if ('y' in xy):
                if (not dopltticks):
                    try:
                        ax.yaxis.set_major_locator(loc)
                        ax.yaxis.set_major_formatter(fmt)
                    except:
                        pass
                else:
                    ax.set_xticks(sep[1][0])
                    ax.set_xticklabels(sep[1][1])
                ax.tick_params(axis='y', which='major', **kwargs)
        #---------------------------------------------
        if ('minor' in which):
            if (length is not None): kwargs['length'] *= 0.6
            #	if(width  is not None): kwargs['width'] =width
            if (not dopltticks):
                try:
                    sep = Asarray(sep, float)[:2]
                    loc = sep[1] if ('major' in which) else sep[0]
                    loc = MultipleLocator(loc)
            #	fmt = FormatStrFormatter(fmt)
                except:
                    pass
            if ('x' in xy):
                if (not dopltticks):
                    try:
                        ax.xaxis.set_minor_locator(loc)
                    #	ax.xaxis.set_minor_formatter(fmt)
                    except:
                        pass
                ax.tick_params(axis='x', which='minor', **kwargs)
            if ('y' in xy):
                if (not dopltticks):
                    try:
                        ax.yaxis.set_minor_locator(loc)
                    #	ax.yaxis.set_minor_formatter(fmt) # this will show values on minor axis, we don't want it
                    except:
                        pass
                ax.tick_params(axis='y', which='minor', **kwargs)
예제 #29
0
파일: Beam.py 프로젝트: jizhi/jizhipy
def BeamMap( pointRA=None, pointDec=None, dwl=None, freq=None, uniform=False, Bmap0=None, dtype='float32', nside=None ) : 
	'''
	pointRA, pointDec:
		[degree]
		Where does the antenna point to?
		default points to (RA, Dec) = (0, 0)

	dwl:
		[meter]
		d - diameter: for dish: one value
		w - width, l - length: for cylinder: (w,l)

	freq: 
		[MHz]
		Used to get FWHM

	uniform:
		True | False
		If ==True: return =1 map

	Bmap0:
		Use this Bmap0 as the basic and rotate it to (pointRA, pointDec)
	'''
	import healpy as hp
	import numpy as np
	from jizhipy.Array import Asarray
	from jizhipy.Basic import Raise
	from jizhipy.Transform import CoordTrans
	try : dtype = np.dtype(dtype)
	except : dtype = np.dtype(None)
	if (nside is not None) : nside = int(round(nside))
	elif (Bmap0 is not None) : nside = hp.get_nside(Bmap0)
	else : Raise(Exception, 'nside = None')
	#--------------------------------------------------
	if (uniform) : 
		Bmap = np.ones(12*nside**2, dtype)
		if (Bmap0 is not None) : Bmap *= Bmap0[Bmap0.size/2]
		return Bmap
	#--------------------------------------------------
	if (Bmap0 is not None) : 
		nside0 = hp.get_nside(Bmap0)
		if (nside0 != nside) : Bmap0 = hp.ud_grade(nside, Bmap0)
		Bmap0 = Bmap0.astype(dtype)
	#--------------------------------------------------
	else : 
		n = hp.ang2pix(nside, np.pi/2, 0)
		Bmap0 = np.zeros(12*nside**2, dtype)
		Bmap0[n] = 10000
		D = Asarray(dwl)[0]
		fwhm = 1.03 * 300/freq / D
		Bmap0 = hp.smoothing(Bmap0, fwhm, verbose=False)
		Bmap0[Bmap0<0] = 0
		Bmap0 /= Bmap0.sum()
	#--------------------------------------------------
	if (pointRA is None) : pointRA = 0
	if (pointDec is None) : pointDec = 0
	if (abs(pointRA)<1e-4 and abs(pointDec)<1e-4) : return Bmap0
	#--------------------------------------------------
	theta, phi = hp.pix2ang(nside, np.arange(12*nside**2))
	theta, phi = CoordTrans.thetaphiRotation([theta, phi], az=pointRA, ay=-pointDec)
	n = hp.ang2pix(nside, theta, phi)
	Bmap = Bmap0[n]
	return Bmap
예제 #30
0
파일: Beam.py 프로젝트: jizhi/jizhipy
	def WaveVector( self, thetaphi=None, widthshape=None, freq=None ) : 
		'''
		\vec{k} = 2pi/lambda * (xk, yk, zk)
		(xk, yk, zk) = thetaphi2xyz(thetaphi)
		(1) WaveVector( thetaphi, freq ) : set self.k, self.thetaphi, self.freq
		(2) WaveVector( thetaphi ) : set self.thetaphi

		self.thetaphi.shape = (2, N_sky-direction)
		self.k.shape = (3, N_sky-direction)

		Generate thetaphi matrix:
		thetaphi, widthshape: use one of them
		(1) give thetaphi argument: 
		thetaphi: 
			thetaphi.shape = (2, N_sky-direction)
			2: (theta, phi) in [rad]
				direction of incident on celestial shpere
				Ground experiment: is half celestial sphere
				Space  experiment: is all  celestial sphere

		(2) give widthshape argument:
			widthNpix = (thetawidth, shape)
				thetawidth: 1 value/float in [rad]
				shape: N | (N,) | (N1, N2)
			Call Beam.ThetaPhiMatrix(thetawidth, Npix)

		freq:
			[MHz], observation frequency
			must be 1 value
			If given, calculate \vec{k}

			k.shape = (3, N_sky-direction)
			3: (xk, yk, zk), NOTE THAT have *2pi/lambda
			N_sky-direction: direction of the incident light

		NOTE THAT (xk, yk, zk) and thetaphi must be in the SAME coordinate system of self.feedpos !!!
		'''
		import numpy as np
		from jizhipy.Transform import CoordTrans
		from jizhipy.Astro import Beam
		from jizhipy.Basic import IsType
		from jizhipy.Array import Asarray
		
		# self.thetaphi
		if (thetaphi is not None) : 
			thetaphi = np.array(thetaphi)
			if (thetaphi.size == 2) : thetaphi = thetaphi.reshape(2, 1)
		else : 
			thetawidth, shape = widthshape
			shape = Asarray(shape, int).flatten()
			self.width = float(thetawidth)
			self.shape = tuple(shape)
			if (shape.size == 1) : 
				theta = np.linspace(-thetawidth/2., thetawidth/2., shape[0])
				thetaphi = np.array([theta, 0*theta])
			else : 
				thetaphi = Beam.ThetaPhiMatrix(thetawidth, shape.max())
				n = shape.max() - shape.min()
				n1, n2 = n/2, n-n/2
				if (shape[0] < shape[1]) : 
					thetaphi = thetaphi[:,n1:-n2]
				elif (shape[0] > shape[1]) : 
					thetaphi = thetaphi[:,:,n1:-n2]
		self.thetaphi = thetaphi
		#----------------------------------------
		if (freq is not None) : 
			freq = float(freq)
			k = 2*np.pi / (300./freq) * CoordTrans.thetaphi2xyz(self.thetaphi)
			self.k, self.freq = k, freq