help="comma-separated item IDs for loved items") parser.add_argument('--like', type=csv, help="comma-separated item IDs for liked items") parser.add_argument('--neutral', type=csv, help="comma-separated item IDs for neutral items") parser.add_argument('--dislike', type=csv, help="comma-separated item IDs for disliked items") parser.add_argument('--hate', type=csv, help="comma-separated item IDs for hated items") args = parser.parse_args() model = LatentFactorsModel(args.model_path) tastes = {} if args.love is not None: for item in args.love: tastes[item] = 1.0 if args.like is not None: for item in args.like: tastes[item] = 0.75 if args.neutral is not None: for item in args.neutral: tastes[item] = 0.5 if args.dislike is not None: for item in args.dislike: tastes[item] = 0.25 if args.hate is not None:
'--max-features', type=int, help="""the maximum number of features to use in cross-validation (ignored if sampling size is not defined)""") parser.add_argument( '-o', '--output', type=str, help="output CSV filename, to store validation scores (MAE)") args = parser.parse_args() if not os.access(args.ratings_path, os.R_OK): print("'%s' is not readable." % args.ratings_path) sys.exit(0) model = LatentFactorsModel() if args.delimiter is not None: model.set_training_csv_delimiter(args.delimiter) if args.rank is not None: model.set_training_rank(args.rank) k = 10 if args.folds is not None: k = args.folds feature_sampling = None if args.feature_sampling_interval is not None: feature_sampling_interval = args.feature_sampling_interval