print("optimizing for planet : {}".format(p_name)) print("radius : {}".format(radius)) print("density: {}".format(density)) print("escape velocity: {}".format(escape_velocity)) print("surface temperature : {}".format(surface_temperature)) print("") problem = get_modified_crs_objective(radius, density, escape_velocity, surface_temperature) # problem = get_modified_drs_objective(radius, density, escape_velocity,surface_temperature) algorithm = MOQPSO(problem=problem, swarm_size=100, max_evaluations=100000, mutation=Polynomial(probability=0.3, distribution_index=20), leaders=CrowdingDistanceArchive(500), reference_point=[0, 0]) # algorithm = SMPSO( # problem=problem, # swarm_size=100, # max_evaluations=100000, # mutation=Polynomial(probability=0.2, distribution_index=10), # leaders=CrowdingDistanceArchive(100), # reference_point=[0] * problem.number_of_objectives # ) try: algorithm.run() front = algorithm.get_result()
from jmetal.algorithm import NSGAII from jmetal.operator import Polynomial, SBX, BinaryTournamentSelection from jmetal.component import RankingAndCrowdingDistanceComparator, BasicAlgorithmObserver from jmetal.problem import ZDT1 algorithm = NSGAII(problem=ZDT1(), population_size=100, max_evaluations=25000, mutation=Polynomial(probability=1.0 / problem.number_of_variables, distribution_index=20), crossover=SBX(probability=1.0, distribution_index=20), selection=BinaryTournamentSelection( comparator=RankingAndCrowdingDistanceComparator())) algorithm.run() front = algorithm.get_result() print(front)