예제 #1
0
def test_hashes_are_different_between_c_and_fortran_contiguous_arrays():
    # We want to be sure that the c-contiguous and f-contiguous versions of the
    # same array produce 2 different hashes.
    rng = np.random.RandomState(0)
    arr_c = rng.random_sample((10, 10))
    arr_f = np.asfortranarray(arr_c)
    assert hash(arr_c) != hash(arr_f)
예제 #2
0
def test_hashes_are_different_between_c_and_fortran_contiguous_arrays():
    # We want to be sure that the c-contiguous and f-contiguous versions of the
    # same array produce 2 different hashes.
    rng = np.random.RandomState(0)
    arr_c = rng.random_sample((10, 10))
    arr_f = np.asfortranarray(arr_c)
    assert hash(arr_c) != hash(arr_f)
예제 #3
0
def test_hash_numpy_noncontiguous():
    a = np.asarray(np.arange(6000).reshape((1000, 2, 3)), order='F')[:, :1, :]
    b = np.ascontiguousarray(a)
    nose.tools.assert_not_equal(hash(a), hash(b))

    c = np.asfortranarray(a)
    nose.tools.assert_not_equal(hash(a), hash(c))
예제 #4
0
def test_hash_numpy_noncontiguous():
    a = np.asarray(np.arange(6000).reshape((1000, 2, 3)), order='F')[:, :1, :]
    b = np.ascontiguousarray(a)
    assert hash(a) != hash(b)

    c = np.asfortranarray(a)
    assert hash(a) != hash(c)
예제 #5
0
 def create_objects_to_hash():
     rng = np.random.RandomState(42)
     # Being explicit about dtypes in order to avoid
     # architecture-related differences. Also using 'f4' rather than
     # 'f8' for float arrays because 'f8' arrays generated by
     # rng.random.randn don't seem to be bit-identical on 32bit and
     # 64bit machines.
     to_hash_list = [
         rng.randint(-1000, high=1000, size=50).astype('<i8'),
         tuple(rng.randn(3).astype('<f4') for _ in range(5)),
         [rng.randn(3).astype('<f4') for _ in range(5)],
         {
             -3333:
             rng.randn(3, 5).astype('<f4'),
             0: [
                 rng.randint(10, size=20).astype('<i8'),
                 rng.randn(10).astype('<f4')
             ]
         },
         # Non regression cases for
         # https://github.com/joblib/joblib/issues/308
         np.arange(100, dtype='<i8').reshape((10, 10)),
         # Fortran contiguous array
         np.asfortranarray(np.arange(100, dtype='<i8').reshape((10, 10))),
         # Non contiguous array
         np.arange(100, dtype='<i8').reshape((10, 10))[:, :2],
     ]
     return to_hash_list
예제 #6
0
def test_hashes_stay_the_same_with_numpy_objects():
    # We want to make sure that hashes don't change with joblib
    # version. For end users, that would mean that they have to
    # regenerate their cache from scratch, which potentially means
    # lengthy recomputations.
    rng = np.random.RandomState(42)
    # Being explicit about dtypes in order to avoid
    # architecture-related differences. Also using 'f4' rather than
    # 'f8' for float arrays because 'f8' arrays generated by
    # rng.random.randn don't seem to be bit-identical on 32bit and
    # 64bit machines.
    to_hash_list = [
        rng.randint(-1000, high=1000, size=50).astype('<i8'),
        tuple(rng.randn(3).astype('<f4') for _ in range(5)),
        [rng.randn(3).astype('<f4') for _ in range(5)],
        {
            -3333:
            rng.randn(3, 5).astype('<f4'),
            0: [
                rng.randint(10, size=20).astype('<i8'),
                rng.randn(10).astype('<f4')
            ]
        },
        # Non regression cases for https://github.com/joblib/joblib/issues/308.
        # Generated with joblib 0.9.4.
        np.arange(100, dtype='<i8').reshape((10, 10)),
        # Fortran contiguous array
        np.asfortranarray(np.arange(100, dtype='<i8').reshape((10, 10))),
        # Non contiguous array
        np.arange(100, dtype='<i8').reshape((10, 10))[:, :2],
    ]

    # These expected results have been generated with joblib 0.9.0
    expected_dict = {
        'py2': [
            '80f2387e7752abbda2658aafed49e086',
            '0d700f7f25ea670fd305e4cd93b0e8cd',
            '83a2bdf843e79e4b3e26521db73088b9',
            '63e0efd43c0a9ad92a07e8ce04338dd3',
            '03fef702946b602c852b8b4e60929914',
            '07074691e90d7098a85956367045c81e',
            'd264cf79f353aa7bbfa8349e3df72d8f'
        ],
        'py3': [
            '10a6afc379ca2708acfbaef0ab676eab',
            '988a7114f337f381393025911ebc823b',
            'c6809f4b97e35f2fa0ee8d653cbd025c',
            'b3ad17348e32728a7eb9cda1e7ede438',
            '927b3e6b0b6a037e8e035bda134e0b05',
            '108f6ee98e7db19ea2006ffd208f4bf1',
            'bd48ccaaff28e16e6badee81041b7180'
        ]
    }

    py_version_str = 'py3' if PY3_OR_LATER else 'py2'
    expected_list = expected_dict[py_version_str]

    for to_hash, expected in zip(to_hash_list, expected_list):
        assert hash(to_hash) == expected
예제 #7
0
def test_hash_numpy_noncontiguous():
    a = np.asarray(np.arange(6000).reshape((1000, 2, 3)),
                   order='F')[:, :1, :]
    b = np.ascontiguousarray(a)
    assert hash(a) != hash(b)

    c = np.asfortranarray(a)
    assert hash(a) != hash(c)
예제 #8
0
def test_hash_numpy_noncontiguous():
    a = np.asarray(np.arange(6000).reshape((1000, 2, 3)),
                   order='F')[:, :1, :]
    b = np.ascontiguousarray(a)
    nose.tools.assert_not_equal(hash(a), hash(b))

    c = np.asfortranarray(a)
    nose.tools.assert_not_equal(hash(a), hash(c))
예제 #9
0
def test_hashes_stay_the_same_with_numpy_objects():
    # We want to make sure that hashes don't change with joblib
    # version. For end users, that would mean that they have to
    # regenerate their cache from scratch, which potentially means
    # lengthy recomputations.
    rng = np.random.RandomState(42)
    # Being explicit about dtypes in order to avoid
    # architecture-related differences. Also using 'f4' rather than
    # 'f8' for float arrays because 'f8' arrays generated by
    # rng.random.randn don't seem to be bit-identical on 32bit and
    # 64bit machines.
    to_hash_list = [
        rng.randint(-1000, high=1000, size=50).astype('<i8'),
        tuple(rng.randn(3).astype('<f4') for _ in range(5)),
        [rng.randn(3).astype('<f4') for _ in range(5)],
        {
            -3333: rng.randn(3, 5).astype('<f4'),
            0: [
                rng.randint(10, size=20).astype('<i8'),
                rng.randn(10).astype('<f4')
            ]
        },
        # Non regression cases for https://github.com/joblib/joblib/issues/308.
        # Generated with joblib 0.9.4.
        np.arange(100, dtype='<i8').reshape((10, 10)),
        # Fortran contiguous array
        np.asfortranarray(np.arange(100, dtype='<i8').reshape((10, 10))),
        # Non contiguous array
        np.arange(100, dtype='<i8').reshape((10, 10))[:, :2],
    ]

    # These expected results have been generated with joblib 0.9.0
    expected_dict = {'py2': ['80f2387e7752abbda2658aafed49e086',
                             '0d700f7f25ea670fd305e4cd93b0e8cd',
                             '83a2bdf843e79e4b3e26521db73088b9',
                             '63e0efd43c0a9ad92a07e8ce04338dd3',
                             '03fef702946b602c852b8b4e60929914',
                             '07074691e90d7098a85956367045c81e',
                             'd264cf79f353aa7bbfa8349e3df72d8f'],
                     'py3': ['10a6afc379ca2708acfbaef0ab676eab',
                             '988a7114f337f381393025911ebc823b',
                             'c6809f4b97e35f2fa0ee8d653cbd025c',
                             'b3ad17348e32728a7eb9cda1e7ede438',
                             '927b3e6b0b6a037e8e035bda134e0b05',
                             '108f6ee98e7db19ea2006ffd208f4bf1',
                             'bd48ccaaff28e16e6badee81041b7180']}

    py_version_str = 'py3' if PY3_OR_LATER else 'py2'
    expected_list = expected_dict[py_version_str]

    for to_hash, expected in zip(to_hash_list, expected_list):
        yield assert_equal, hash(to_hash), expected
예제 #10
0
def test_non_contiguous_array_pickling(tmpdir):
    filename = tmpdir.join('test.pkl').strpath

    for array in [  # Array that triggers a contiguousness issue with nditer,
                    # see https://github.com/joblib/joblib/pull/352 and see
                    # https://github.com/joblib/joblib/pull/353
                    np.asfortranarray([[1, 2], [3, 4]])[1:],
                    # Non contiguous array with works fine with nditer
                    np.ones((10, 50, 20), order='F')[:, :1, :]]:
        assert not array.flags.c_contiguous
        assert not array.flags.f_contiguous
        numpy_pickle.dump(array, filename)
        array_reloaded = numpy_pickle.load(filename)
        np.testing.assert_array_equal(array_reloaded, array)
예제 #11
0
def test_non_contiguous_array_pickling():
    filename = env['filename'] + str(random.randint(0, 1000))

    for array in [  # Array that triggers a contiguousness issue with nditer,
                    # see https://github.com/joblib/joblib/pull/352 and see
                    # https://github.com/joblib/joblib/pull/353
                    np.asfortranarray([[1, 2], [3, 4]])[1:],
                    # Non contiguous array with works fine with nditer
                    np.ones((10, 50, 20), order='F')[:, :1, :]]:
        assert not array.flags.c_contiguous
        assert not array.flags.f_contiguous
        numpy_pickle.dump(array, filename)
        array_reloaded = numpy_pickle.load(filename)
        np.testing.assert_array_equal(array_reloaded, array)
        os.remove(filename)
예제 #12
0
def test_non_contiguous_array_pickling():
    filename = env['filename'] + str(random.randint(0, 1000))

    for array in [  # Array that triggers a contiguousness issue with nditer,
            # see https://github.com/joblib/joblib/pull/352 and see
            # https://github.com/joblib/joblib/pull/353
            np.asfortranarray([[1, 2], [3, 4]])[1:],
            # Non contiguous array with works fine with nditer
            np.ones((10, 50, 20), order='F')[:, :1, :]
    ]:
        nose.tools.assert_false(array.flags.c_contiguous)
        nose.tools.assert_false(array.flags.f_contiguous)
        numpy_pickle.dump(array, filename)
        array_reloaded = numpy_pickle.load(filename)
        np.testing.assert_array_equal(array_reloaded, array)
        os.remove(filename)
예제 #13
0
def test_hashes_stay_the_same_with_numpy_objects():
    # We want to make sure that hashes don't change with joblib
    # version. For end users, that would mean that they have to
    # regenerate their cache from scratch, which potentially means
    # lengthy recomputations.
    rng = np.random.RandomState(42)
    # Being explicit about dtypes in order to avoid
    # architecture-related differences. Also using 'f4' rather than
    # 'f8' for float arrays because 'f8' arrays generated by
    # rng.random.randn don't seem to be bit-identical on 32bit and
    # 64bit machines.
    to_hash_list = [
        rng.randint(-1000, high=1000, size=50).astype('<i8'),
        tuple(rng.randn(3).astype('<f4') for _ in range(5)),
        [rng.randn(3).astype('<f4') for _ in range(5)],
        {
            -3333: rng.randn(3, 5).astype('<f4'),
            0: [
                rng.randint(10, size=20).astype('<i8'),
                rng.randn(10).astype('<f4')
            ]
        },
        # Non regression cases for https://github.com/joblib/joblib/issues/308.
        # Generated with joblib 0.9.4.
        np.arange(100, dtype='<i8').reshape((10, 10)),
        # Fortran contiguous array
        np.asfortranarray(np.arange(100, dtype='<i8').reshape((10, 10))),
        # Non contiguous array
        np.arange(100, dtype='<i8').reshape((10, 10))[:, :2],
    ]

    # These expected results have been generated with joblib 0.9.0
    expected_hashes = [
        '10a6afc379ca2708acfbaef0ab676eab',
        '988a7114f337f381393025911ebc823b',
        'c6809f4b97e35f2fa0ee8d653cbd025c',
        'b3ad17348e32728a7eb9cda1e7ede438',
        '927b3e6b0b6a037e8e035bda134e0b05',
        '108f6ee98e7db19ea2006ffd208f4bf1',
        'bd48ccaaff28e16e6badee81041b7180'
    ]

    for to_hash, expected in zip(to_hash_list, expected_hashes):
        assert hash(to_hash) == expected