val = numpy.random.rand() * (10**expo) state['wiener_lambda'] = val state['test_step'] = 10**numpy.random.randint(6) n = numpy.random.randint(2) if n == 0: state['style'] = 'continous' else: state['style'] = 'random_pos' n = numpy.random.randint(7) if n == 0: expo = -numpy.random.randint(3) - 1 val = numpy.random.rand() * (10**expo) state['task_noise'] = val else: state['task_noise'] = 0. n = numpy.random.randint(7) if n == 0: expo = -numpy.random.randint(3) - 1 val = numpy.random.rand() * (10**expo) state['task_wout_noise'] = val else: state['task_wout_noise'] = 0. state['name'] = 'rnn_%03d' % n_jobs sql.add_experiments_to_db([state], db, verbose=1, force_dup=True) print 'N_jobs ', n_jobs, TABLE_NAME
state['lr'] = .01 state['lsIters'] = 80 state['checkFreq'] = 5 state['krylovDim'] = 15 state['lbfgsIters'] = 30 state['data'] = '/home/pascanur/data/cifar10.npz' state['mreg'] = 1. state['adaptivedamp'] = 1 state['model'] = 'mlp' state['metric'] = 'Gf' state['algo'] = 'natNCG' state['gbs'] = 40000 state['mbs'] = 5000 state['ebs'] = 5000 state['init'] = 'xavier' for hids in [ '[2000,1000,1000]', '[3000,1000,1000]', '[2000,1000,1000,1000]', '[3000,1500,1000,500]', '[2000,1000,1000,1000,500,500]']: state['hids'] = hids n_jobs += 1 sql.add_experiments_to_db([state], db, verbose=1, force_dup = True) print 'N_jobs ', n_jobs, TABLE_NAME