def expand( self, results: beam.PCollection[job_run_result.JobRunResult] ) -> beam.pvalue.PDone: """Writes the given job results to the NDB datastore. This overrides expand from parent class. Args: results: PCollection. Models, can also contain just one model. Returns: PCollection. An empty PCollection. """ return ( results # NOTE: Pylint is wrong. WithKeys() is a decorated function with a # different signature than the one it's defined with. | beam.WithKeys(None) # pylint: disable=no-value-for-parameter # GroupIntoBatches() requires (key, value) pairs as input, so we # give everything None keys and then immediately discard them. | beam.GroupIntoBatches(self._MAX_RESULT_INSTANCES_PER_MODEL) | beam.Values() # pylint: disable=no-value-for-parameter | beam.FlatMap(job_run_result.JobRunResult.accumulate) | beam.Map(self.create_beam_job_run_result_model, results.pipeline.options.namespace) | ndb_io.PutModels())
def run(self) -> beam.PCollection[job_run_result.JobRunResult]: user_settings_models = ( self.pipeline | 'Get all UserSettingsModels' >> (ndb_io.GetModels(user_models.UserSettingsModel.get_all()))) old_user_stats_models = ( self.pipeline | 'Get all UserStatsModels' >> (ndb_io.GetModels(user_models.UserStatsModel.get_all()))) # Creates UserStatsModels if it does not exists. new_user_stats_models = ( (user_settings_models, old_user_stats_models) | 'Merge models' >> beam.Flatten() # Returns a PCollection of # (model.id, (user_settings_models, user_stats_models)) or # (model.id, (user_settings_models,)). | 'Group models with same ID' >> beam.GroupBy(lambda m: m.id) # Discards model.id from the PCollection. | 'Get rid of key' >> beam.Values() # pylint: disable=no-value-for-parameter # Only keep groupings that indicate that # the UserStatsModel is missing. | 'Filter pairs of models' >> beam.Filter(lambda models: (len(list(models)) == 1 and isinstance( list(models)[0], user_models.UserSettingsModel))) # Choosing the first element. | 'Transform tuples into models' >> beam.Map(lambda models: list(models)[0]) # Creates the missing UserStatsModels. | 'Create new user stat models' >> beam.ParDo( CreateUserStatsModel())) unused_put_result = ( (new_user_stats_models, old_user_stats_models) | 'Merge new and old models together' >> beam.Flatten() | 'Update the dashboard stats' >> beam.ParDo( UpdateWeeklyCreatorStats()) | 'Put models into the datastore' >> ndb_io.PutModels()) new_user_stats_job_result = ( new_user_stats_models | 'Count all new models' >> beam.combiners.Count.Globally() | 'Only create result for new models when > 0' >> (beam.Filter(lambda x: x > 0)) | 'Create result for new models' >> beam.Map(lambda x: job_run_result.JobRunResult( stdout='SUCCESS NEW %s' % x))) old_user_stats_job_result = ( old_user_stats_models | 'Count all old models' >> beam.combiners.Count.Globally() | 'Only create result for old models when > 0' >> (beam.Filter(lambda x: x > 0)) | 'Create result for old models' >> beam.Map(lambda x: job_run_result.JobRunResult( stdout='SUCCESS OLD %s' % x))) return ((new_user_stats_job_result, old_user_stats_job_result) | 'Merge new and old results together' >> beam.Flatten())
def test_write_to_datastore(self): model_list = [ self.create_model(base_models.BaseModel, id='a'), self.create_model(base_models.BaseModel, id='b'), self.create_model(base_models.BaseModel, id='c'), ] self.assertItemsEqual(self.get_everything(), []) self.assert_pcoll_empty(self.pipeline | beam.Create(model_list) | ndb_io.PutModels()) self.assertItemsEqual(self.get_everything(), model_list)
def expand(self, results): """Writes the given job results to the NDB datastore.""" return ( results # NOTE: Pylint is wrong. WithKeys() is a decorated function with a # different signature than the one it's defined with. | beam.WithKeys(None) # pylint: disable=no-value-for-parameter # GroupIntoBatches() requires (key, value) pairs as input, so we # give everything None keys and then immediately discard them. | beam.GroupIntoBatches(self._MAX_RESULT_INSTANCES_PER_MODEL) | beam.Values() | beam.FlatMap(job_run_result.JobRunResult.accumulate) | beam.Map(self.create_beam_job_run_result_model) | ndb_io.PutModels(self.datastoreio_stub))
def test_write_to_datastore(self) -> None: model_list = [ self.create_model(base_models.BaseModel, id='a'), self.create_model(base_models.BaseModel, id='b'), self.create_model(base_models.BaseModel, id='c'), ] self.assertItemsEqual(self.get_base_models(), []) # type: ignore[no-untyped-call] self.assert_pcoll_empty(self.pipeline | beam.Create(model_list) | ndb_io.PutModels()) self.assertItemsEqual(self.get_base_models(), model_list) # type: ignore[no-untyped-call]
def run(self) -> beam.PCollection[job_run_result.JobRunResult]: """Returns a PCollection of 'SUCCESS' or 'FAILURE' results from the Elastic Search. Returns: PCollection. A PCollection of 'SUCCESS' or 'FAILURE' results from the Elastic Search. """ exp_summary_models = ( self.pipeline | 'Get all non-deleted models' >> (ndb_io.GetModels(exp_models.ExpSummaryModel.get_all()))) exp_summary_iter = beam.pvalue.AsIter(exp_summary_models) exp_recommendations_models = ( exp_summary_models | 'Compute similarity' >> beam.ParDo(ComputeSimilarity(), exp_summary_iter) | 'Group similarities per exploration ID' >> beam.GroupByKey() | 'Sort and slice similarities' >> beam.MapTuple( lambda exp_id, similarities: (exp_id, self._sort_and_slice_similarities(similarities))) | 'Create recommendation models' >> beam.MapTuple( self._create_recommendation)) unused_put_result = ( exp_recommendations_models | 'Put models into the datastore' >> ndb_io.PutModels()) return (exp_recommendations_models | 'Count all new models' >> beam.combiners.Count.Globally() | 'Only create result for new models when > 0' >> (beam.Filter(lambda x: x > 0)) | 'Create result for new models' >> beam.Map(lambda x: job_run_result.JobRunResult( stdout='SUCCESS %s' % x)))
def run(self) -> beam.PCollection[job_run_result.JobRunResult]: """Generates the translation contributins stats. Returns: PCollection. A PCollection of 'SUCCESS x' results, where x is the number of generated stats.. """ suggestions_grouped_by_target = ( self.pipeline | 'Get all non-deleted suggestion models' >> ndb_io.GetModels( suggestion_models.GeneralSuggestionModel.get_all( include_deleted=False)) # We need to window the models so that CoGroupByKey below # works properly. | 'Window the suggestions' >> beam.WindowInto( beam.window.Sessions(10 * 60)) | 'Filter translate suggestions' >> beam.Filter(lambda m: ( m.suggestion_type == feconf.SUGGESTION_TYPE_TRANSLATE_CONTENT)) | 'Transform to suggestion domain object' >> beam.Map( suggestion_services.get_suggestion_from_model) | 'Group by target' >> beam.GroupBy(lambda m: m.target_id)) exp_opportunities = ( self.pipeline | 'Get all non-deleted opportunity models' >> ndb_io.GetModels( opportunity_models.ExplorationOpportunitySummaryModel.get_all( include_deleted=False)) # We need to window the models so that CoGroupByKey below # works properly. | 'Window the opportunities' >> beam.WindowInto( beam.window.Sessions(10 * 60)) | 'Transform to opportunity domain object' >> beam.Map(opportunity_services. get_exploration_opportunity_summary_from_model) | 'Group by ID' >> beam.GroupBy(lambda m: m.id)) new_user_stats_models = ( { 'suggestion': suggestions_grouped_by_target, 'opportunity': exp_opportunities } | 'Merge models' >> beam.CoGroupByKey() | 'Get rid of key' >> beam.Values() # pylint: disable=no-value-for-parameter | 'Generate stats' >> beam.ParDo(lambda x: self._generate_stats( x['suggestion'][0] if len(x['suggestion']) else [], x[ 'opportunity'][0][0] if len(x['opportunity']) else None)) | 'Group by key' >> beam.GroupByKey() | 'Combine the stats' >> beam.CombineValues(CombineStats()) | 'Generate models from stats' >> beam.MapTuple( self._generate_translation_contribution_model)) unused_put_result = ( new_user_stats_models | 'Put models into the datastore' >> ndb_io.PutModels()) return (new_user_stats_models | 'Count all new models' >> (beam.combiners.Count.Globally().without_defaults()) | 'Only create result for new models when > 0' >> (beam.Filter(lambda x: x > 0)) | 'Create result for new models' >> beam.Map(lambda x: job_run_result.JobRunResult( stdout='SUCCESS %s' % x)))