def test_zig_zag(): """Zig Zag Scan MyHDL Test In this test is verified the correct behavior of the zig zag module """ samples, output_bits, N = 5, 10, 8 clock = Signal(bool(0)) reset = ResetSignal(1, active=True, async=True) inputs = outputs_2d(output_bits, N) outputs = outputs_2d(output_bits, N) in_out_data = InputsAndOutputs(samples, N, output_bits) in_out_data.initialize() @block def bench_zig_zag(): tdut = zig_zag(inputs, outputs, clock, reset, N) tbclock = clock_driver(clock) @instance def tbstim(): yield pulse_reset(reset, clock) inputs.data_valid.next = True for i in range(samples): for j in range(N**2): inputs.out_sigs[j].next = in_out_data.inputs[i][j] yield clock.posedge @instance def monitor(): outputs_count = 0 yield outputs.data_valid.posedge yield delay(1) while(outputs_count != samples): out_print(in_out_data.outputs[outputs_count], outputs.out_sigs, N) yield clock.posedge yield delay(1) outputs_count += 1 raise StopSimulation return tdut, tbclock, tbstim, monitor run_testbench(bench_zig_zag)
def test_zig_zag(): """Zig Zag Scan MyHDL Test In this test is verified the correct behavior of the zig zag module """ samples, output_bits, N = 5, 10, 8 clock = Signal(bool(0)) reset = ResetSignal(1, active=True, async=True) inputs = outputs_2d(output_bits, N) outputs = outputs_2d(output_bits, N) in_out_data = InputsAndOutputs(samples, N, output_bits) in_out_data.initialize() @block def bench_zig_zag(): tdut = zig_zag(inputs, outputs, clock, reset, N) tbclock = clock_driver(clock) @instance def tbstim(): yield pulse_reset(reset, clock) inputs.data_valid.next = True for i in range(samples): for j in range(N**2): inputs.out_sigs[j].next = in_out_data.inputs[i][j] yield clock.posedge @instance def monitor(): outputs_count = 0 yield outputs.data_valid.posedge yield delay(1) while (outputs_count != samples): out_print(in_out_data.outputs[outputs_count], outputs.out_sigs, N) yield clock.posedge yield delay(1) outputs_count += 1 raise StopSimulation return tdut, tbclock, tbstim, monitor run_testbench(bench_zig_zag)
def test_dct_2d(): """2D-DCT MyHDL Test In this test is verified the correct behavior of the 2d-dct module """ samples, fract_bits, output_bits, stage_1_prec, N = 5, 14, 10, 10, 8 clock = Signal(bool(0)) reset = ResetSignal(1, active=True, async=True) inputs = input_interface() outputs = outputs_2d(output_bits, N) in_out_data = InputsAndOutputs(samples, N) in_out_data.initialize() @myhdl.block def bench_dct_2d(): tdut = dct_2d(inputs, outputs, clock, reset, fract_bits, stage_1_prec, output_bits, N) tbclock = clock_driver(clock) @instance def tbstim(): yield pulse_reset(reset, clock) inputs.data_valid.next = True for i in range(samples): for j in in_out_data.inputs[i]: for k in j: inputs.data_in.next = k yield clock.posedge @instance def monitor(): outputs_count = 0 while outputs_count != samples: yield clock.posedge yield delay(1) if outputs.data_valid: out_print(in_out_data.outputs[outputs_count], outputs.out_sigs, N) outputs_count += 1 raise StopSimulation return tdut, tbclock, tbstim, monitor run_testbench(bench_dct_2d)
def test_zig_zag_conversion(): """Convertible Zig Zag Module Test This is the convertible testbench which ensures that the overall design is convertible and verified for its correct behavior""" samples, output_bits, N = 5, 10, 8 clock = Signal(bool(0)) reset = ResetSignal(1, active=True, async=True) inputs = outputs_2d(output_bits, N) outputs = outputs_2d(output_bits, N) in_out_data = InputsAndOutputs(samples, N, output_bits) in_out_data.initialize() inputs_rom, expected_outputs_rom = in_out_data.get_rom_tables() clock = Signal(bool(0)) reset = ResetSignal(1, active=True, async=True) @block def bench_zig_zag(): tdut = zig_zag(inputs, outputs, clock, reset, N) tbclock = clock_driver(clock) tbrst = reset_on_start(reset, clock) print_sig = [ Signal(intbv(0, min=-2**output_bits, max=2**output_bits)) for _ in range(N**2) ] print_sig_1 = [ Signal(intbv(0, min=-2**output_bits, max=2**output_bits)) for _ in range(N**2) ] in_sigs = [ Signal(intbv(0, min=-2**output_bits, max=2**output_bits)) for _ in range(N**2) ] @instance def tbstim(): inputs.data_valid.next = True for i in range(samples): for j in range(N**2): in_sigs[j].next = inputs_rom[i * (N**2) + j] yield clock.posedge print_assign = assign_array(print_sig_1, outputs.out_sigs) input_assign = assign_array(inputs.out_sigs, in_sigs) @instance def monitor(): outputs_count = 0 yield outputs.data_valid.posedge yield delay(1) while (outputs_count != samples): for i in range(N**2): print_sig[i].next = expected_outputs_rom[outputs_count * (N**2) + i] yield delay(1) print("Expected Outputs") for i in range(N**2): print("%d " % print_sig[i]) print("Actual Outputs") for i in range(N**2): print("%d " % print_sig_1[i]) print("------------------------------") outputs_count += 1 yield clock.posedge raise StopSimulation return tdut, tbclock, tbstim, monitor, print_assign, input_assign, tbrst assert bench_zig_zag().verify_convert() == 0
def test_dct_2d_conversion(): samples, fract_bits, output_bits, stage_1_prec, N = 5, 14, 10, 10, 8 clock = Signal(bool(0)) reset = ResetSignal(1, active=True, async=True) inputs = input_interface() outputs = outputs_2d(output_bits, N) in_out_data = InputsAndOutputs(samples, N) in_out_data.initialize() inputs_rom, expected_outputs_rom = in_out_data.get_rom_tables() @myhdl.block def bench_dct_2d(): tdut = dct_2d(inputs, outputs, clock, reset, fract_bits, output_bits, stage_1_prec, N) tbclk = clock_driver(clock) tbrst = reset_on_start(reset, clock) print_sig = [Signal(intbv(0, min=-2**output_bits, max=2**output_bits)) for _ in range(N**2)] print_sig_1 = [Signal(intbv(0, min=-2**output_bits, max=2**output_bits)) for _ in range(N**2)] @instance def tbstim(): yield reset.negedge inputs.data_valid.next =True for i in range(samples * (N**2)): inputs.data_in.next = inputs_rom[i] yield clock.posedge print_assign = outputs.assignment_2(print_sig_1) @instance def monitor(): outputs_count = 0 while outputs_count != samples: yield clock.posedge if outputs.data_valid: for i in range(N**2): print_sig[i].next = expected_outputs_rom[outputs_count * (N**2) + i] yield delay(1) print("Expected Outputs") for i in range(N**2): print("%d " % print_sig[i]) print("Actual Outputs") for i in range(N**2): print("%d " % print_sig_1[i]) print("------------------------------") outputs_count += 1 raise StopSimulation return tdut, tbclk, tbstim, monitor, tbrst, print_assign # verify and convert with GHDL verify.simulator = 'ghdl' assert bench_dct_2d().verify_convert() == 0 # verify and convert with iverilog verify.simulator = 'iverilog' assert bench_dct_2d().verify_convert() == 0
def test_dct_2d_conversion(): """Convertible 2D-DCT Test This is the convertible testbench which ensures that the overall design is convertible and verified for its correct behavior""" samples, fract_bits, output_bits, stage_1_prec, N = 5, 14, 10, 10, 8 clock = Signal(bool(0)) reset = ResetSignal(1, active=True, async=True) inputs = input_interface() outputs = outputs_2d(output_bits, N) in_out_data = InputsAndOutputs(samples, N) in_out_data.initialize() inputs_rom, expected_outputs_rom = in_out_data.get_rom_tables() @myhdl.block def bench_dct_2d(): tdut = dct_2d(inputs, outputs, clock, reset, fract_bits, output_bits, stage_1_prec, N) tbclk = clock_driver(clock) tbrst = reset_on_start(reset, clock) print_sig = [Signal(intbv(0, min=-2**output_bits, max=2**output_bits)) for _ in range(N**2)] print_sig_1 = [Signal(intbv(0, min=-2**output_bits, max=2**output_bits)) for _ in range(N**2)] @instance def tbstim(): yield reset.negedge inputs.data_valid.next =True for i in range(samples * (N**2)): inputs.data_in.next = inputs_rom[i] yield clock.posedge print_assign = assign_array(print_sig_1, outputs.out_sigs) @instance def monitor(): outputs_count = 0 while outputs_count != samples: yield clock.posedge if outputs.data_valid: for i in range(N**2): print_sig[i].next = expected_outputs_rom[outputs_count * (N**2) + i] yield delay(1) print("Expected Outputs") for i in range(N**2): print("%d " % print_sig[i]) print("Actual Outputs") for i in range(N**2): print("%d " % print_sig_1[i]) print("------------------------------") outputs_count += 1 raise StopSimulation return tdut, tbclk, tbstim, monitor, tbrst, print_assign assert bench_dct_2d().verify_convert() == 0
def test_zig_zag_conversion(): """Convertible Zig Zag Module Test This is the convertible testbench which ensures that the overall design is convertible and verified for its correct behavior""" samples, output_bits, N = 5, 10, 8 clock = Signal(bool(0)) reset = ResetSignal(1, active=True, async=True) inputs = outputs_2d(output_bits, N) outputs = outputs_2d(output_bits, N) in_out_data = InputsAndOutputs(samples, N, output_bits) in_out_data.initialize() inputs_rom, expected_outputs_rom = in_out_data.get_rom_tables() clock = Signal(bool(0)) reset = ResetSignal(1, active=True, async=True) @block def bench_zig_zag(): tdut = zig_zag(inputs, outputs, clock, reset, N) tbclock = clock_driver(clock) tbrst = reset_on_start(reset, clock) print_sig = [Signal(intbv(0, min=-2**output_bits, max=2**output_bits)) for _ in range(N**2)] print_sig_1 = [Signal(intbv(0, min=-2**output_bits, max=2**output_bits)) for _ in range(N**2)] in_sigs = [Signal(intbv(0, min=-2**output_bits, max=2**output_bits)) for _ in range(N**2)] @instance def tbstim(): inputs.data_valid.next = True for i in range(samples): for j in range(N**2): in_sigs[j].next = inputs_rom[i*(N**2) + j] yield clock.posedge print_assign = assign_array(print_sig_1, outputs.out_sigs) input_assign = assign_array(inputs.out_sigs, in_sigs) @instance def monitor(): outputs_count = 0 yield outputs.data_valid.posedge yield delay(1) while(outputs_count != samples): for i in range(N**2): print_sig[i].next = expected_outputs_rom[outputs_count * (N**2) + i] yield delay(1) print("Expected Outputs") for i in range(N**2): print("%d " % print_sig[i]) print("Actual Outputs") for i in range(N**2): print("%d " % print_sig_1[i]) print("------------------------------") outputs_count += 1 yield clock.posedge raise StopSimulation return tdut, tbclock, tbstim, monitor, print_assign, input_assign, tbrst assert bench_zig_zag().verify_convert() == 0
def frontend_top_level_v2(inputs, outputs, clock, reset, N=8): """Frontend Part of the JPEG Encoder This part combines the color space conversion, 2D-DCT and zig-zag scan modules. It takes serially each input pixel (Red, Green, Blue) and when it computes the first block it takes another two times the same block in order to compute the other components. First outputs the Y block, then the Cb block and last the Cr block. The processing of this part is continuous and it never stops. Inputs: red, green, blue, data_valid, clock, reset Outputs: data_out, data_valid """ """Color Space Conversion""" rgb2ycbcr_out = YCbCr_v2() inputs_reg = RGB() color_space_converter = rgb2ycbcr_v2(inputs_reg, rgb2ycbcr_out, clock, reset) """2D-DCT Transformation""" dct_2d_input = input_interface() dct_2d_output = outputs_2d() dct_2d_inst = dct_2d(dct_2d_input, dct_2d_output, clock, reset) """Zig-Zag Module""" zig_zag_out = outputs_2d() zig_zag_inst = zig_zag(dct_2d_output, zig_zag_out, clock, reset) """Intermediate signals""" input_counter = Signal(intbv(0, min=0, max=64)) color_mode = Signal(intbv(0, min=0, max=3)) output_counter = Signal(intbv(0, min=0, max=64)) start_out = Signal(bool(0)) @always_seq(clock.posedge, reset=reset) def input_reg(): inputs_reg.red.next = inputs.red inputs_reg.green.next = inputs.green inputs_reg.blue.next = inputs.blue inputs_reg.data_valid.next = inputs.data_valid inputs_reg.color_mode.next = color_mode @always_seq(clock.posedge, reset=reset) def color_space_to_dct(): """signal assignment from color_space_conversion module to dct_2d inputs""" if rgb2ycbcr_out.data_valid: dct_2d_input.data_in.next = rgb2ycbcr_out.data_out dct_2d_input.data_valid.next = rgb2ycbcr_out.data_valid @always_seq(clock.posedge, reset=reset) def first_control_signals_update(): """Is used to update the control signal color_mode for the first mux of the rgb2ycbcr output to 2d dct""" if inputs.data_valid: if input_counter == 63: input_counter.next = 0 if color_mode == 2: color_mode.next = 0 else: color_mode.next = color_mode + 1 else: input_counter.next = input_counter + 1 @always_comb def set_start_out(): if zig_zag_out.data_valid: start_out.next = True @always_seq(clock.posedge, reset=reset) def data_valid_assign(): if zig_zag_out.data_valid: outputs.data_valid.next = zig_zag_out.data_valid @always_seq(clock.posedge, reset=reset) def zig_zag_to_output_mux(): """signal assignment from zig zag to output""" if start_out: outputs.data_out.next = zig_zag_out.out_sigs[output_counter] @always_seq(clock.posedge, reset=reset) def output_counter_reset(): if start_out: if output_counter == 63: output_counter.next = 0 else: output_counter.next = output_counter + 1 return (color_space_converter, zig_zag_inst, dct_2d_inst, color_space_to_dct, zig_zag_to_output_mux, first_control_signals_update, set_start_out, output_counter_reset, input_reg, data_valid_assign)