import jpype import os.path from getpass import getpass # ensure that the uniobjects package in included in the jvm if os.path.isabs(__file__): root = os.path.dirname(os.path.dirname(__file__)) else: root = os.path.dirname(os.getcwd()) lib = os.path.join(root, 'lib') ou = os.path.join(lib, 'asjava.zip') default_jvm = jpype.get_default_jvm_path() jpype.startJVM(default_jvm, '-Djava.class.path={}'.format(ou)) passwd = getpass() UniSession = jpype.JPackage('asjava').uniobjects.UniSession sess = UniSession() try: sess.connect('jssrhl2', 'jmileson', passwd, 'JSS') parts = sess.openFile('PARTS') data = parts.read('010G.11') prov = sess.dynArray(data) finally: sess.disconnect() jpype.shutdownJVM() print('Complete')
# load the JAR file print("Setting up the JVM and class path to JARs"); jvmPath = "/usr/lib/jvm/java-6-openjdk/jre/lib/amd64/server/libjvm.so"; classPath = "-Djava.class.path="; classPath = classPath + "$HOME/research_linux/SELM_Builder/dist/SELM_Builder.jar"; classPath = classPath + ":/usr/lib/jvm/java-6-openjdk/jre/lib/rt.jar"; classPath = classPath + ":/usr/lib/jvm/java-6-openjdk/jre/lib/resources.jar"; classPath = classPath + ":/usr/share/netbeans/java4/modules/ext/appframework-1.0.3.jar"; classPath = classPath + ":/usr/share/netbeans/java4/modules/ext/swing-worker-1.1.jar"; jpype.startJVM(jvmPath, classPath) # load main class package print("Loading the application packages"); selm_builder = jpype.JPackage("org.atzberger.application.selm_builder"); application_Main = jpype.JClass("org.atzberger.application.selm_builder.application_Main"); # launches the application print("Launching the application"); application_Main.launchNoArgs(); # gets instance of the application (not sure how this is determined exactly) print("Getting application data : WARNING may need to call getApplSharedData() after application finishes launching. "); Atz_Application_Data_Communication = jpype.JClass("org.atzberger.application.selm_builder.Atz_Application_Data_Communication"); applSharedData = Atz_Application_Data_Communication.getApplSharedData(); # allows for Python to control the application String = jpype.JClass("java.lang.String");
import jpype as jp jp.startJVM(jp.getDefaultJVMPath(), "-ea") testpackage = jp.JPackage('Test').Test Test = testpackage Test.speak("Hello from a custom Java class") t = Test() print t.getString() jp.shutdownJVM()
import jpype from jpype import * import os.path app = Flask(__name__) PORT = 5015 jvmPath = jpype.getDefaultJVMPath() jarpath = os.path.join(os.path.abspath('.'), 'D:\\jar\\') if not jpype.isJVMStarted(): jpype.startJVM(jvmPath, '-ea', "-Djava.class.path=%s" % (jarpath + 'AccountingSystem.jar')) print(jarpath + 'AccountingSystem.jar') jpype.java.lang.System.out.println("Hello World") JDClass = jpype.JPackage('program').AccountManager # 类 # jd = JDClass() # 对象 @app.route("/") def show_web(): return render_template('main.html') @app.route("/user/login", methods=['POST']) def user_login(): data = request.form return JDClass.user_login(data['username'], data['pwd']) @app.route("/user/logout", methods=['POST'])
def jidt_kraskov(self, source, target, opts): """Calculate transfer entropy with JIDT's Kraskov implementation. Calculate transfer entropy between a source and a target variable using JIDT's implementation of the Kraskov type 1 estimator. Transfer entropy is defined as the conditional mutual information between the source's past state and the target's current value, conditional on the target's past. Past states need to be defined in the opts dictionary, where a past state is defined as a uniform embedding with parameters history and tau. The history describes the number of samples taken from a variable's past, tau descrices the embedding delay, i.e., the spacing between every two samples from the processes' past. References: Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85(2), 461. Kraskov, A., Stoegbauer, H., & Grassberger, P. (2004). Estimating mutual information. Physical review E, 69(6), 066138. Lizier, Joseph T. (2014). JIDT: an information-theoretic toolkit for studying the dynamics of complex systems. Front. Robot. AI, 1(11). This function is ment to be imported into the set_estimator module and used as a method in the Estimator_cmi class. Args: self : instance of Estimator_cmi function is supposed to be used as part of the Estimator_cmi class source : numpy array realisations of the source variable target : numpy array realisations of the target variable opts : dict [optional] sets estimation parameters: - 'kraskov_k' - no. nearest neighbours for KNN search (default=4) - 'normalise' - z-standardise data (default=False) - 'theiler_t' - no. next temporal neighbours ignored in KNN and range searches (default='ACT', the autocorr. time of the target) - 'noise_level' - random noise added to the data (default=1e-8) - 'local_values' - return local TE instead of average TE (default=False) - 'history_target' - number of samples in the target's past to consider (mandatory to provide) - 'history_source' - number of samples in the source's past to consider (default=same as the target history) - 'tau_source' - source's embedding delay (default=1) - 'tau_target' - target's embedding delay (default=1) - 'source_target_delay' - information transfer delay between source and target (default=1) - 'debug' - set debug prints from the calculator on (default=False) Returns: float transfer entropy from source to target OR numpy array of floats local transfer entropy if local_values is set Note: Some technical details: JIDT normalises over realisations, IDTxl normalises over raw data once, outside the CMI calculator to save computation time. The Theiler window ignores trial boundaries. The CMI estimator does add noise to the data as a default. To make analysis runs replicable set noise_level to 0. """ if type(opts) is not dict: raise TypeError('Opts should be a dictionary.') # Get histories. try: history_target = opts['history_target'] except KeyError: raise RuntimeError('No history was provided for TE estimation.') history_source = opts.get('history_source', history_target) tau_target = opts.get('tau_target', 1) tau_source = opts.get('tau_source', 1) delay = opts.get('source_target_delay', 1) debug = opts.get('debug', False) # Get defaults for estimator options. kraskov_k = str(opts.get('kraskov_k', 4)) normalise = str(opts.get('normalise', False)).lower() theiler_t = str(opts.get('theiler_t', 0)) # TODO necessary? noise_level = str(opts.get('noise_level', 1e-8)) local_values = opts.get('local_values', False) # Start JAVA virtual machine. jarLocation = resource_filename(__name__, 'infodynamics.jar') if not jp.isJVMStarted(): jp.startJVM(jp.getDefaultJVMPath(), '-ea', ('-Djava.class.path=' + jarLocation)) # Estimate TE. calcClass = (jp.JPackage('infodynamics.measures.continuous.kraskov'). TransferEntropyCalculatorKraskov) calc = calcClass() calc.setDebug(debug) calc.setProperty('NORMALISE', normalise) calc.setProperty('k', kraskov_k) calc.setProperty('PROP_KRASKOV_ALG_NUM', str(1)) calc.setProperty('NOISE_LEVEL_TO_ADD', noise_level) calc.setProperty('DYN_CORR_EXCL', theiler_t) calc.initialise(history_target, tau_target, history_source, tau_source, delay) calc.setObservations(source, target) if local_values: return np.array(calc.computeLocalOfPreviousObservations()) else: return calc.computeAverageLocalOfObservations()
def testEmptyObjectArray(self): ''' Test for strange crash reported in bug #1089302''' Test2 = jpype.JPackage('jpype.array').Test2 test = Test2() test.test(test.getValue())
for p, v in jd.fields.items(): print(v) print("- - - - - - - - - - - - - - - - - - - - - - - - - - - - -") print("=========================================================") def renderPackage(pkg): for i in dir(pkg): print("Test", i) try: p = getattr(pkg, i) except Exception: continue if isinstance(p, _jpype._JPackage): renderPackage(p) continue if isinstance(p, jpype.JClass): renderClass(p) try: renderPackage(jpype.JPackage('com.google.gson')) except org.jpype.javadoc.JavadocException as ex: print("Javadoc Error: ", ex.message()) print(hw.asString(ex.node)) raise ex except Exception as ex: print("Error in") print(hw.asString(current)) raise ex
def load_hanalmot(): check_jar() if not jpype.isJVMStarted(): init_jvm() return jpype.JPackage('net.ingtra.hanalmot').HanalmotJava
def __init__(self): if not jpype.isJVMStarted(): jpype.startJVM(jpype.getDefaultJVMPath(),"-ea","-Djava.class.path=jasypt-1.7.1.jar") self.BasicTextEncryptor = jpype.JPackage('org').jasypt.util.text.BasicTextEncryptor self.BasicTextEncryptor_inst = self.BasicTextEncryptor() self.BasicTextEncryptor_inst.setPassword("WWW.IAPPPAY.COM_YANGFENG")
'''This uses Autoplot Java/Swing GUIs to create URIs''' from autoplot import * import jpype org = javaaddpath('http://autoplot.org/latest/autoplot.jar') oldURI = 'vap+cdaweb:' javax = jpype.JPackage('javax') java = jpype.JPackage('java') parent = javax.swing.JPanel() parent.setLayout(java.awt.BorderLayout()) DataSourceEditorPanelUtil = org.autoplot.datasource.DataSourceEditorPanelUtil p = DataSourceEditorPanelUtil.getDataSourceEditorPanel(parent, oldURI) WindowManager = org.autoplot.datasource.WindowManager if WindowManager.OK_OPTION == WindowManager.showConfirmDialog( None, p, "Editing URI", WindowManager.OK_CANCEL_OPTION): print(p.getURI())
def compute_bTE_all_pairs(traj): nodes_n = traj.par.topology.initial.nodes_n # Generate initial network G = network_dynamics.generate_network(traj.par.topology.initial) # Get adjacency matrix adjacency_matrix = np.array( nx.to_numpy_matrix(G, nodelist=np.array(range(0, nodes_n)), dtype=int)) # Add self-loops np.fill_diagonal(adjacency_matrix, 1) # Generate initial node coupling coupling_matrix = network_dynamics.generate_coupling( traj.par.node_coupling.initial, adjacency_matrix) # Generate delay delay_matrices = network_dynamics.generate_delay(traj.par.delay.initial, adjacency_matrix) # Generate coefficient matrices coefficient_matrices = np.transpose(delay_matrices * coupling_matrix, (0, 2, 1)) # Run dynamics time_series = network_dynamics.run_dynamics(traj.par.node_dynamics, coefficient_matrices) # initialise an empty data object dat = Data() # Load time series if traj.par.node_dynamics.model == 'boolean_random': normalise = False elif traj.par.node_dynamics.model == 'AR_gaussian_discrete': normalise = True dat = Data(time_series, dim_order='psr', normalise=normalise) data = dat.data # Compute empirical bTE between all pairs lag = 1 history_target = traj.par.estimation.history_target settings = {} settings['source_target_delay'] = lag settings['history_source'] = traj.par.estimation.history_source if traj.par.node_dynamics.model == 'boolean_random': settings['history_target'] = history_target est = JidtDiscreteTE(settings) elif traj.par.node_dynamics.model == 'AR_gaussian_discrete': settings['history_target'] = history_target est = JidtGaussianTE(settings) bTE_empirical_matrix = np.full((nodes_n, nodes_n), np.NaN) for X in range(nodes_n): for Y in range(nodes_n): if (adjacency_matrix[X, Y] > 0) and (X != Y): bTE_empirical_matrix[X, Y] = est.estimate(data[X, :, 0], data[Y, :, 0]) # Add results to the trajectory # The wildcard character $ will be replaced by the name of the current run, # formatted as `run_XXXXXXXX` traj.f_add_result('$.topology.initial', adjacency_matrix=adjacency_matrix, comment='') traj.f_add_result('$.node_coupling.initial', coupling_matrix=coupling_matrix, coefficient_matrices=coefficient_matrices, comment='') traj.f_add_result('$.delay.initial', delay_matrices=delay_matrices, comment='') # traj.f_add_result( # '$.node_dynamics', # time_series=time_series, # comment='') traj.f_add_result(PickleResult, '$.bTE', bTE_empirical_matrix=bTE_empirical_matrix, comment='') jSystem = jpype.JPackage("java.lang").System jSystem.gc()
def render_text(self, outfd, data): j_test_path = '-Djava.class.path=/root/JDI-old.jar' jpype.startJVM(jpype.getDefaultJVMPath(), j_test_path) tasks = self.calculate() if len(tasks) > 0: task = tasks[0] else: jpype.shutdownJVM() raise Exception("no task or wrong pid") libnames = [] libbases = [] libs = [] name_set = set() for vma in task.get_proc_maps(): fname = vma.vm_name(task) if fname == "Anonymous Mapping": fname = "" if len(fname) > 0 and fname not in name_set: name_set.add(fname) lib = Library() lib.base = vma.vm_start lib.name = fname libnames.append(str(lib.name)) libbases.append(long(lib.base)) libs.append(lib) for lib in libs: if ".so" in lib.name or "java" in lib.name: print "base:", lib.base, "name:", lib.name threadsId = [] for thread in task.threads(): threadsId.append(long(thread.pid)) self.libnames = libnames self.libbases = libbases self.threadsId = threadsId self.currentTask = task self.libs = libs self.symbolDict = {} self.total_time = 0 self.rr_time = 0 symbol = volatility.plugins.linux.java.readelf.read_sym_offset( "/usr/local/development/jdk1.7.0_79/jre/lib/amd64/server/libjvm.so" ) self.symbolDict[ "/usr/local/development/jdk1.7.0_79/jre/lib/amd64/server/libjvm.so"] = symbol j_frames = jpype.JPackage('sun.tools.jdi').Frames method_dict = { 'getThreadsId': self.getThreadsId, 'getLibName': self.getLibName, 'getLibBase': self.getLibBase, 'lookUpByName': self.lookUpByName, 'readBytesFromProcess': self.readBytesFromProcess } jp = jpype.JProxy( 'sun.jvm.hotspot.debugger.linux.PythonMethodInterface', dict=method_dict) j_frames.init(str(task.pid), jp, 1, 'func4') print "real read time is", self.rr_time print "read time is", self.total_time cmd = raw_input() while "q" not in cmd: res = j_frames.getThread('func4') if res == 0: print "not contains" cmd = raw_input() continue self.total_time = 0 self.rr_time = 0 t1 = time.time() j_frames.pythonTest(str(cmd), 'func4') t2 = time.time() print "real read time is", self.rr_time print "read time is", self.total_time print "time is", t2 - t1 cmd = raw_input() jpype.shutdownJVM()
def get_transfer_entropy(brain_output, delay=1, reciprocal=True, log=False, local=False, binning=True, min_v=0., max_v=1.): """ Calculate transfer entropy from 2D time series. :param brain_output: time series numpy array :param delay: lag between source and destination :param reciprocal: whether to calculate average TE in both directions :param log: whether to print intermediate results :param local: whether to calculate local entropy values """ if binning: calcClass = jpype.JPackage( "infodynamics.measures.discrete").TransferEntropyCalculatorDiscrete source = discretize(brain_output[:, 0], BINS, min_v, max_v).tolist() destination = discretize(brain_output[:, 1], BINS, min_v, max_v).tolist() calc = calcClass(BINS, 1) calc.initialise() calc.addObservations(source, destination) else: calcClass = jpype.JPackage("infodynamics.measures.continuous.kraskov" ).TransferEntropyCalculatorKraskov source = brain_output[:, 0] destination = brain_output[:, 1] calc = calcClass() initialize_calc(calc, delay) calc.setObservations(source, destination) te_src_dst = calc.computeAverageLocalOfObservations() if binning: te_src_dst = te_src_dst / np.log2(BINS) if log: print('te_src_dst: {}'.format(te_src_dst)) local_te = [] if local: te_src_dst_local = calc.computeLocalOfPreviousObservations() local_te.append(te_src_dst_local) if not reciprocal: return te_src_dst calc.initialise() # Re-initialise leaving the parameters the same if binning: calc.addObservations(destination, source) else: calc.setObservations(destination, source) te_dst_src = calc.computeAverageLocalOfObservations() if binning: te_dst_src = te_dst_src / np.log2(BINS) avg_te = np.mean([te_src_dst, te_dst_src]) if log: print('te_dst_src: {}'.format(te_dst_src)) if local: te_dst_src_local = calc.computeLocalOfPreviousObservations() local_te.append(te_dst_src_local) return avg_te, local_te return avg_te
def initialize_gt_generation(self, des_dist=5, max_d=50): # Create list of tuples containing the surrounding polygon, the baseline and the article id of each textline tl_list = [] for tl in self.textlines: try: tl_bl = tl.baseline.to_polygon() tl_bl.calculate_bounds() except AttributeError: print(f"Textline with id {tl.id} has no baseline coordinates. Skipping...") continue tl_surr_poly = None try: tl_surr_poly = tl.surr_p.to_polygon().get_bounding_box() except (AttributeError, TypeError): print(f"Textline with id {tl.id} has no surrounding polygon.") tl_list.append([tl, tl_surr_poly, tl_bl, tl.get_article_id()]) # Calculate the interline distance for each baseline # calculation of the normed polygons (includes also the calculation of their bounding boxes) list_of_normed_polygons = norm_poly_dists([tl[2] for tl in tl_list], des_dist=des_dist) # call java code to calculate the interline distances java_util = jpype.JPackage("citlab_article_separation.java").Util() list_of_normed_polygon_java = [] for poly in list_of_normed_polygons: list_of_normed_polygon_java.append(jpype.java.awt.Polygon(poly.x_points, poly.y_points, poly.n_points)) list_of_interline_distances_java = java_util.calcInterlineDistances(list_of_normed_polygon_java, des_dist, max_d) list_of_interline_distances = list(list_of_interline_distances_java) tl_list_copy = copy.deepcopy(tl_list) # Update the bounding boxes for the textlines for tl_tuple, tl_interdist in zip(tl_list_copy, list_of_interline_distances): _, _, tl_bl, _ = tl_tuple # bounding rectangle moved up and down height_shift = int(tl_interdist) tl_bl.bounds.translate(dx=0, dy=-height_shift) tl_bl.bounds.height += int(1.1 * height_shift) tl_surr_poly_final = [] has_intersect_surr_polys = [False] * len(tl_list_copy) for i in range(len(tl_list_copy)): tl1, tl1_surr_poly, tl1_bl, tl1_aid = tl_list_copy[i] for j in range(i + 1, len(tl_list_copy)): tl2, tl2_surr_poly, tl2_bl, tl2_aid = tl_list_copy[j] def baseline_intersection_loop(bl1, bl2): intersect = bl1.bounds.intersection(bl2.bounds) while intersect.width >= 0 and intersect.height >= 0: # TODO: Check if this works (bounding boxes intersect in a horizontal way) if intersect.height == bl1.bounds.height or intersect.height == bl2.bounds.height: width_shift = 1 # bl1 lies right of bl2 if bl1.bounds.x + bl1.bounds.width > bl2.bounds.x + bl2.bounds.width: bl1.bounds.width -= width_shift bl1.bounds.x += width_shift bl2.bounds.width -= width_shift # bl1 lies left of bl2 else: bl1.bounds.width -= width_shift bl2.bounds.x += width_shift bl2.bounds.width -= width_shift elif bl1.bounds.y + bl1.bounds.height > bl2.bounds.y + bl2.bounds.height: height_shift = max(1, int(0.05 * bl1.bounds.height)) bl1.bounds.height -= height_shift bl1.bounds.y += height_shift elif bl2.bounds.y + bl2.bounds.height > bl1.bounds.y + bl1.bounds.height: height_shift = max(1, int(0.05 * bl2.bounds.height)) bl2.bounds.height -= height_shift bl2.bounds.y += height_shift intersect = bl1.bounds.intersection(bl2.bounds) return bl1 if tl1_surr_poly is not None and not has_intersect_surr_polys[i]: if tl2_surr_poly is not None and not has_intersect_surr_polys[j]: intersection = tl1_surr_poly.intersection(tl2_surr_poly) has_intersect_surr_polys[ j] = True if intersection.width >= 0 and intersection.height >= 0 else False else: intersection = tl1_surr_poly.intersection(tl2_bl.bounds) if not (intersection.width >= 0 and intersection.height >= 0 and tl1_aid != tl2_aid): if j == len(tl_list_copy) - 1: tl_surr_poly_final.append((tl1, tl1_surr_poly, tl1_aid)) continue has_intersect_surr_polys[i] = True else: if tl2_surr_poly is not None: intersection = tl1_bl.bounds.intersection(tl2_surr_poly) has_intersect_surr_polys[ j] = True if intersection.width >= 0 and intersection.height >= 0 else False else: intersection = tl1_bl.bounds.intersection(tl2_bl.bounds) if intersection.width >= 0 and intersection.height >= 0 and tl1_aid != tl2_aid: bl = baseline_intersection_loop(tl1_bl, tl2_bl) if j == len(tl_list_copy) - 1: tl_surr_poly_final.append((tl1, bl.bounds, tl1_aid)) elif j == len(tl_list_copy) - 1: tl_surr_poly_final.append((tl1, tl1_bl.bounds, tl1_aid)) if len(has_intersect_surr_polys) > 0: if has_intersect_surr_polys[-1] or tl_list_copy[-1][1] is None: tl_surr_poly_final.append((tl_list_copy[-1][0], tl_list_copy[-1][2].bounds, tl_list_copy[-1][3])) else: tl_surr_poly_final.append((tl_list_copy[-1][0], tl_list_copy[-1][1], tl_list_copy[-1][3])) return tl_surr_poly_final
import jpype import jpype.imports from jpype.types import * # Launch the JVM jpype.startJVM(classpath=['amidst-v4-5-beta3.jar']) import java.nio.file as file mc = jpype.JPackage("amidst") #inst_path = file.FileSystems.getDefault().getPath('/', 'home', 'sandi', '.local', 'share', 'multimc', 'instances', '1.16.1', '.minecraft') inst = mc.mojangapi.file.MinecraftInstallation.newLocalMinecraftInstallation() versions = list(inst.readInstalledVersionsAsLauncherProfiles()) prof = next(filter(lambda version: version.getVersionId() == '1.16.1', versions)) mc_interface = mc.mojangapi.minecraftinterface.MinecraftInterfaces.fromLocalProfile(prof) seed = mc.mojangapi.world.WorldSeed.fromUserInput("hello") world_type = mc.mojangapi.world.WorldType.DEFAULT gen_opts = "" opts = mc.mojangapi.world.WorldOptions(seed, world_type, gen_opts) world = mc_interface.createWorld(seed.getLong(), world_type, gen_opts) recognized_version = mc_interface.getRecognisedVersion() builder = mc.mojangapi.world.versionfeatures.DefaultVersionFeatures.builder(opts, world) features = builder.create(recognized_version) biome_list = features.get(mc.mojangapi.world.versionfeatures.FeatureKey.BIOME_LIST) biome_oracle = mc.mojangapi.world.oracle.BiomeDataOracle(world, recognized_version, biome_list) from tkinter import * root = Tk()
tables = get_tables(conn, schema) for table in tables: print(table) columns = get_columns(cursor, table) for column in columns: print(column) conn.close() try: init_jvm(class_path, max_heap_size) import java.lang WbManager = jp.JPackage('workbench').WbManager WbManager.prepareForEmbedded() batch = jp.JPackage('workbench.sql').BatchRunner() batch.setBaseDir(data_dir + '/jpype_test/') # batch.setStoreErrors(True) # batch.setErrorScript('error.log') # batch.setShowStatementWithResult(True) # batch.setScriptToRun('wbexport.sql') # batch.execute() batch.runScript("WbConnect -url='" + url + "' -password="******";") gen_report_str = "WbSchemaReport -file=metadata.xml -schemas=" + schema + " -types=SYNONYM,TABLE,VIEW -includeProcedures=true -includeTriggers=true -writeFullSource=true;" batch.runScript(gen_report_str) # batch.showResultSets(True) # TODO: Viser resultat da -> Fikse bedre visning i console hvordan? # batch.setVerboseLogging(True)
# teCalc.setObservations(jpype.JArray(jpype.JDouble, 1)(sourceArray2), jpype.JArray(jpype.JDouble, 1)(destArray)) # result2 = teCalc.computeAverageLocalOfObservations() # print("TE result %.4f nats; expected to be close to 0 nats for these uncorrelated Gaussians" % result2) """Continuous Transfer Entropy with automatic embedding (Kraskov)""" # Examine the heart-breath interaction that Schreiber originally looked at: datafile = "/Users/katja/javawd/infodynamics-dist-1.4/demos/data/SFI-heartRate_breathVol_bloodOx.txt" data = readFloatsFile.readFloatsFile(datafile) # As numpy array: A = np.array(data) # Select data points 2350:3550, pulling out the relevant columns: breathRate = A[2350:3551, 1] heartRate = A[2350:3551, 0] # Create a Kraskov TE calculator: teCalcClass = jpype.JPackage("infodynamics.measures.continuous.kraskov" ).TransferEntropyCalculatorKraskov teCalc = teCalcClass() # Set properties for auto-embedding of both source and destination # using the Ragwitz criteria: # a. Auto-embedding method teCalc.setProperty(teCalcClass.PROP_AUTO_EMBED_METHOD, teCalcClass.AUTO_EMBED_METHOD_RAGWITZ) # b. Search range for embedding dimension (k) and delay (tau) teCalc.setProperty(teCalcClass.PROP_K_SEARCH_MAX, "6") teCalc.setProperty(teCalcClass.PROP_TAU_SEARCH_MAX, "6") # Since we're auto-embedding, no need to supply k, l, k_tau, l_tau here: teCalc.initialise() # Compute TE from breath (column 1) to heart (column 0) teCalc.setObservations(breathRate, heartRate) teBreathToHeart = teCalc.computeAverageLocalOfObservations()
# _*_ coding: utf-8 _*_ ''' Created on 2018年1月29日 测试python调用其他语言 @author: hudaqiang ''' from outer_invoke.java_invoke import JavaInvocation import jpype if __name__ == '__main__': javaInvocation = JavaInvocation('commons-io-2.4.jar') javaInvocation.start_jvm() #java和javax两个库可以包名.类名调用 salt_file = jpype.java.io.File('/Users/hudaqiang/Downloads/resource/salt') fileUtils = jpype.JPackage('org').apache.commons.io.FileUtils read_lines = fileUtils.readLines(salt_file) javaInvocation.jprint(read_lines) javaInvocation.shutdown_jvm()
class OpenRocketInterface(object): def __init__(self): jpype.startJVM(jvm, "-Djava.class.path=%s" % classpath) openRocketAPIClass = 'net.sf.openrocket.startup.OpenRocketAPI' try: OpenRocketAPI = jpype.JClass(openRocketAPIClass) except jpype.JavaException, ex: if ex.message() == "Class " + openRocketAPIClass + " not found": print "Caught the runtime exception:\n ", ex.message() print "Ensure that you are using a version of OpenRocket with this class" else: print "Caught the runtime exception:\n ", ex.message() quit() self.apiInstance = OpenRocketAPI() # openrocket.simulation.FlightDataType # depends on resources.I10n.messages.properties fdt = jpype.JPackage('net.sf.openrocket.simulation').FlightDataType self.type_dic = { 'TYPE_TIME': fdt.TYPE_TIME, 'TYPE_TIME_STEP': fdt.TYPE_TIME_STEP, 'TYPE_ALTITUDE': fdt.TYPE_ALTITUDE, 'TYPE_VELOCITY_Z': fdt.TYPE_VELOCITY_Z, 'TYPE_ACCELERATION_Z': fdt.TYPE_ACCELERATION_Z, 'TYPE_VELOCITY_TOTAL': fdt.TYPE_VELOCITY_TOTAL, 'TYPE_ACCELERATION_TOTAL': fdt.TYPE_ACCELERATION_TOTAL, 'TYPE_POSITION_X': fdt.TYPE_POSITION_X, 'TYPE_POSITION_Y': fdt.TYPE_POSITION_Y, 'TYPE_POSITION_XY': fdt.TYPE_POSITION_XY, 'TYPE_POSITION_DIRECTION': fdt.TYPE_POSITION_DIRECTION, 'TYPE_VELOCITY_XY': fdt.TYPE_VELOCITY_XY, 'TYPE_ACCELERATION_XY': fdt.TYPE_ACCELERATION_XY, 'TYPE_ACCELERATION_X': fdt.TYPE_ACCELERATION_X, 'TYPE_ACCELERATION_Y': fdt.TYPE_ACCELERATION_Y, 'TYPE_LATITUDE': fdt.TYPE_LATITUDE, 'TYPE_LONGITUDE': fdt.TYPE_LONGITUDE, 'TYPE_GRAVITY': fdt.TYPE_GRAVITY, 'TYPE_AOA': fdt.TYPE_AOA, 'TYPE_ROLL_RATE': fdt.TYPE_ROLL_RATE, 'TYPE_PITCH_RATE': fdt.TYPE_PITCH_RATE, 'TYPE_YAW_RATE': fdt.TYPE_YAW_RATE, 'TYPE_MASS': fdt.TYPE_MASS, 'TYPE_PROPELLANT_MASS': fdt.TYPE_PROPELLANT_MASS, 'TYPE_LONGITUDINAL_INERTIA': fdt.TYPE_LONGITUDINAL_INERTIA, 'TYPE_ROTATIONAL_INERTIA': fdt.TYPE_ROTATIONAL_INERTIA, 'TYPE_CP_LOCATION': fdt.TYPE_CP_LOCATION, 'TYPE_CG_LOCATION': fdt.TYPE_CG_LOCATION, 'TYPE_STABILITY': fdt.TYPE_STABILITY, 'TYPE_MACH_NUMBER': fdt.TYPE_MACH_NUMBER, 'TYPE_REYNOLDS_NUMBER': fdt.TYPE_REYNOLDS_NUMBER, 'TYPE_THRUST_FORCE': fdt.TYPE_THRUST_FORCE, 'TYPE_DRAG_FORCE': fdt.TYPE_DRAG_FORCE, 'TYPE_DRAG_COEFF': fdt.TYPE_DRAG_COEFF, 'TYPE_AXIAL_DRAG_COEFF': fdt.TYPE_AXIAL_DRAG_COEFF, 'TYPE_FRICTION_DRAG_COEFF': fdt.TYPE_FRICTION_DRAG_COEFF, 'TYPE_PRESSURE_DRAG_COEFF': fdt.TYPE_PRESSURE_DRAG_COEFF, 'TYPE_BASE_DRAG_COEFF': fdt.TYPE_BASE_DRAG_COEFF, 'TYPE_NORMAL_FORCE_COEFF': fdt.TYPE_NORMAL_FORCE_COEFF, 'TYPE_PITCH_MOMENT_COEFF': fdt.TYPE_PITCH_MOMENT_COEFF, 'TYPE_YAW_MOMENT_COEFF': fdt.TYPE_YAW_MOMENT_COEFF, 'TYPE_SIDE_FORCE_COEFF': fdt.TYPE_SIDE_FORCE_COEFF, 'TYPE_ROLL_MOMENT_COEFF': fdt.TYPE_ROLL_MOMENT_COEFF, 'TYPE_ROLL_FORCING_COEFF': fdt.TYPE_ROLL_FORCING_COEFF, 'TYPE_ROLL_DAMPING_COEFF': fdt.TYPE_ROLL_DAMPING_COEFF, 'TYPE_PITCH_DAMPING_MOMENT_COEFF': fdt.TYPE_PITCH_DAMPING_MOMENT_COEFF, 'TYPE_YAW_DAMPING_MOMENT_COEFF': fdt.TYPE_YAW_DAMPING_MOMENT_COEFF, 'TYPE_CORIOLIS_ACCELERATION': fdt.TYPE_CORIOLIS_ACCELERATION, 'TYPE_REFERENCE_LENGTH': fdt.TYPE_REFERENCE_LENGTH, 'TYPE_REFERENCE_AREA': fdt.TYPE_REFERENCE_AREA, 'TYPE_ORIENTATION_THETA': fdt.TYPE_ORIENTATION_THETA, 'TYPE_ORIENTATION_PHI': fdt.TYPE_ORIENTATION_PHI, 'TYPE_WIND_VELOCITY': fdt.TYPE_WIND_VELOCITY, 'TYPE_AIR_TEMPERATURE': fdt.TYPE_AIR_TEMPERATURE, 'TYPE_AIR_PRESSURE': fdt.TYPE_AIR_PRESSURE, 'TYPE_SPEED_OF_SOUND': fdt.TYPE_SPEED_OF_SOUND, 'TYPE_COMPUTATION_TIME': fdt.TYPE_COMPUTATION_TIME }
import jpype # start the JVM if not jpype.isJVMStarted(): jar = "HeidelTime/de.unihd.dbs.heideltime.standalone.jar" jpype.startJVM(jpype.getDefaultJVMPath(), "-ea", "-Djava.class.path=%s" % jar) # get the Java classes we want to use heideltime_resources = jpype.JPackage( "de.unihd.dbs.uima.annotator.heideltime.resources") heideltime_standalone = jpype.JPackage("de.unihd.dbs.heideltime.standalone") # constants LANGUAGES = { 'english': heideltime_resources.Language.ENGLISH, 'german': heideltime_resources.Language.GERMAN, 'dutch': heideltime_resources.Language.DUTCH, 'italian': heideltime_resources.Language.ITALIAN, 'spanish': heideltime_resources.Language.SPANISH, 'arabic': heideltime_resources.Language.ARABIC, 'french': heideltime_resources.Language.FRENCH, 'chinese': heideltime_resources.Language.CHINESE, 'russian': heideltime_resources.Language.RUSSIAN, 'portuguese': heideltime_resources.Language.PORTUGUESE } DOCUMENTS = { 'narratives': heideltime_standalone.DocumentType.NARRATIVES, 'news': heideltime_standalone.DocumentType.NEWS, 'colloquial': heideltime_standalone.DocumentType.COLLOQUIAL,
try: #print('--------startjvm---------') jpype.startJVM(jvm, jvm_options) #print("JVM path:"+ jpype.getDefaultJVMPath()) #print('----- running jvm -------------') except Exception as e: print('====== throw error ======') traceback.print_exc() jpype.shutdownJVM() System = jpype.java.lang.System #System = jpype.JClass('java.lang.System') System.setProperty("java.security.krb5.conf", "/you_filed_algos/krb5.conf") Configuration = jpype.JPackage('org.apache.hadoop.conf').Configuration conf = Configuration() conf.set("hadoop.security.authentication", "kerberos") try: UserGroupInformation = jpype.JClass( 'org.apache.hadoop.security.UserGroupInformation') UserGroupInformation.setConfiguration(conf) UserGroupInformation.loginUserFromKeytab( "sjfw_pbpang", "/you_filed_algos/sjfw_pbpang.keytab") conn = jaydebeapi.connect(dirver, url) print("* create connection object") cur = conn.cursor() cur.execute('show databases')
def convert_bunch_to_weka_instances(bunch): '''Converts a dataset from a scikit-learn Bunch format to a Weka Instances object :param bunch: dataset in scikit Bunch format; looks for field 'feature_value_names' for nominal features :return: dataset in Weka Instances format ''' util = jp.JPackage("java.util") weka_core = jp.JPackage("weka.core") list_attrs = util.ArrayList() num_samples = bunch.data.shape[0] # num_samples = 5 num_features = bunch.data.shape[1] # numAtt = 3 num_targets = 1 # create the features for j in range(0, num_features): if bunch.has_key("feature_value_names") and len( bunch.feature_value_names[j]) > 0: att_vals = util.ArrayList() for v in bunch.feature_value_names[j]: att_vals.add(v) # Constructor for nominal attributes and string attributes. att = weka_core.Attribute(bunch.feature_names[j], att_vals) else: # Constructor for a numeric attribute with a particular index. att = weka_core.Attribute(bunch.feature_names[j], j) list_attrs.add(att) num_att = num_features + num_targets if len(bunch.target_names) > 0: # nominal target att_vals = util.ArrayList() for v in bunch.target_names: att_vals.add(v) # Constructor for nominal attributes and string attributes. target_att = weka_core.Attribute("nominalClass", att_vals) else: # numeric target target_att = weka_core.Attribute("numericClass", num_att - 1) list_attrs.add(target_att) inst = weka_core.Instances(bunch.DESCR, list_attrs, num_samples) for i in range(0, num_samples): my_row = weka_core.DenseInstance(num_att) for j in range(0, num_features): my_row.setValue(j, bunch.data[i][j]) my_row.setValue(num_att - 1, jp.JDouble(bunch.target[i])) inst.add(jp.JObject(my_row, 'weka.core.Instance')) inst.setClassIndex(inst.numAttributes() - 1) return inst
def jidt_discrete(self, source, target, opts): """Calculate TE with JIDT's implementation for discrete variables. Calculate the transfer entropy between two time series processes. Call JIDT via jpype and use the discrete estimator. Transfer entropy is defined as the conditional mutual information between the source's past state and the target's current value, conditional on the target's past. References: Schreiber, T. (2000). Measuring information transfer. Physical Review Letters, 85(2), 461. Lizier, Joseph T. (2014). JIDT: an information-theoretic toolkit for studying the dynamics of complex systems. Front. Robot. AI, 1(11). This function is ment to be imported into the set_estimator module and used as a method in the Estimator_te class. Args: self : instance of Estimator_te function is supposed to be used as part of the Estimator_te class source : numpy array (either of integers or doubles to be discretised) time series realisations of the first random variable. Can be multidimensional (i.e. multivariate) where dimensions of the array are realisations x variable dimension target : numpy array (either of integers or doubles to be discretised) time series realisations of the second random variable. Can be multidimensional (i.e. multivariate) where dimensions of the array are realisations x variable dimension opts : dict sets estimation parameters: - 'discretise_method' - if and how to discretise incoming continuous variables to discrete values. 'max_ent' means to use a maximum entropy binning 'equal' means to use equal size bins 'none' means variables are already discrete (default='none') - 'num_discrete_bins' - number of discrete bins for discretisation if requested (default=2 for binary). If this is set, parameters 'alph_source', 'alph_target' and 'alphc' are all set to 'num_discrete_bins' - 'alph_source' - number of discrete bins/levels for source (default=2 for binary, or the value set for 'num_discrete_bins') - 'alph_target' - number of discrete bins/levels for target (default=2 for binary, or the value set for 'num_discrete_bins') - 'history_target' - number of samples in the target's past to consider (mandatory) - 'history_source' - number of samples in the source's past to consider (default=same as the target history) - 'tau_source' - source's embedding delay (default=1) - 'tau_target' - target's embedding delay (default=1) - 'source_target_delay' - information transfer delay between source and target (default=1) - 'debug' - set debug prints from the calculator on (default=False) Returns: float transfer entropy """ if type(opts) is not dict: raise TypeError('Opts should be a dictionary.') # Get alphabet sizes and check if discretisation is requested discretise_method = opts.get('discretise_method', 'none') alph_source = int(opts.get('alph_source', 2)) alph_target = int(opts.get('alph_target', 2)) if (discretise_method == 'none'): if alph_source < np.unique(source).shape[0]: raise RuntimeError('The source' 's alphabet size does not match the' ' no. unique elements in the source array.') if alph_target < np.unique(target).shape[0]: raise RuntimeError('The target' 's alphabet size does not match the' ' no. unique elements in the target array.') else: # get the number of bins if discretisation was requested try: num_discrete_bins = int(opts['num_discrete_bins']) alph_source = num_discrete_bins alph_target = num_discrete_bins except KeyError: pass # Do nothing and use the default for alph_* set above # Get embedding and delay parameters. try: history_target = opts['history_target'] except KeyError: raise RuntimeError('No history was provided for TE estimation.') try: history_source = opts['history_source'] except KeyError: history_source = history_target tau_target = opts.get('tau_target', 1) tau_source = opts.get('tau_source', 1) delay = opts.get('source_target_delay', 1) debug = opts.get('debug', False) # Work out the number of samples and dimensions for each variable, before # we collapse all dimensions down: if len(source.shape) > 1: # source is is multidimensional source_dimensions = source.shape[1] else: # source is unidimensional source_dimensions = 1 if len(target.shape) > 1: # target is is multidimensional target_dimensions = target.shape[1] else: # target is unidimensional target_dimensions = 1 # Now discretise if required if (discretise_method == 'equal'): source = utils.discretise(source, alph_source) target = utils.discretise(target, alph_target) elif (discretise_method == 'max_ent'): source = utils.discretise_max_ent(source, alph_source) target = utils.discretise_max_ent(target, alph_target) else: pass # don't discretise at all, assume data to be discrete # Then collapse any mulitvariates into univariate arrays: source = utils.combine_discrete_dimensions(source, alph_source) target = utils.combine_discrete_dimensions(target, alph_target) # And finally make the TE calculation: jarLocation = resource_filename(__name__, 'infodynamics.jar') if not jp.isJVMStarted(): jp.startJVM(jp.getDefaultJVMPath(), '-ea', ('-Djava.class.path=' + jarLocation)) calcClass = (jp.JPackage( 'infodynamics.measures.discrete').TransferEntropyCalculatorDiscrete) calc = calcClass( int( max(math.pow(alph_source, source_dimensions), math.pow(alph_target, target_dimensions))), history_target, tau_target, history_source, tau_source, delay) calc.setDebug(debug) calc.initialise() # Unfortunately no faster way to pass numpy arrays in than this list conversion calc.addObservations( jp.JArray(jp.JInt, 1)(source.tolist()), jp.JArray(jp.JInt, 1)(target.tolist())) return calc.computeAverageLocalOfObservations()
jp.java.opt.ga.MutationFunction jp.java.opt.ga.StandardGeneticAlgorithm jp.java.opt.ga.UniformCrossOver jp.java.opt.prob.GenericProbabilisticOptimizationProblem jp.java.opt.prob.MIMIC jp.java.opt.prob.ProbabilisticOptimizationProblem jp.java.shared.FixedIterationTrainer jp.java.opt.example.ContinuousPeaksEvaluationFunction """ Commandline parameter(s): none """ ContinuousPeaksEvaluationFunction = jp.JPackage('opt').example.ContinuousPeaksEvaluationFunction DiscreteUniformDistribution = jp.JPackage('dist').DiscreteUniformDistribution DiscreteChangeOneNeighbor = jp.JPackage('opt').DiscreteChangeOneNeighbor DiscreteChangeOneMutation = jp.JPackage('opt').ga.DiscreteChangeOneMutation SingleCrossOver = jp.JPackage('opt').ga.SingleCrossOver DiscreteDependencyTree = jp.JPackage('dist').DiscreteDependencyTree GenericHillClimbingProblem = jp.JPackage('opt').GenericHillClimbingProblem GenericGeneticAlgorithmProblem = jp.JPackage('opt').ga.GenericGeneticAlgorithmProblem GenericProbabilisticOptimizationProblem = jp.JPackage('opt').prob.GenericProbabilisticOptimizationProblem RandomizedHillClimbing = jp.JPackage('opt').RandomizedHillClimbing FixedIterationTrainer = jp.JPackage('shared').FixedIterationTrainer SimulatedAnnealing = jp.JPackage('opt').SimulatedAnnealing StandardGeneticAlgorithm = jp.JPackage('opt').ga.StandardGeneticAlgorithm MIMIC = jp.JPackage('opt').prob.MIMIC
import jpype jvmPath = jpype.getDefaultJVMPath() ext_class_dir = "jars/" jvmArg = '-Djava.ext.dirs=' + ext_class_dir jpype.startJVM(jvmPath, jvmArg) cuengh_tokenizer = jpype.JPackage('org.roeg.cytokenizer').CuenghTokenizer() vlist = open("tools/sawguq.txt").read().strip().split("\n") vset = set() for line in vlist: key = line.split(" ")[0] klist = cuengh_tokenizer.tokenize(key) klist = map(lambda x: x.toString(), klist) vset |= set(klist) print(len(vset))
result_list2d = [] for i in result_yield: result_list2d.append([Levenshtein.distance(key, i[0]), i]) result_list2d.sort() for i in result_list2d: yield i[1] jvmPath = jpype.getDefaultJVMPath() ext_class_dir = "jars/" jvmArg = '-Djava.ext.dirs=' + ext_class_dir jpype.startJVM(jvmPath, jvmArg) Dict = jpype.JPackage('org.roeg.sawroeg').Dict cuengh_tokenizer = jpype.JPackage('org.roeg.cytokenizer').CuenghTokenizer() bouyei_tokenizer = jpype.JPackage('org.roeg.cytokenizer').BouyeiTokenizer() wordsSimilarity = Dict.wordsSimilarity isStringChinese = Dict.isStringChinese languageFilter = Dict.languageFilter WORD_TIMES = 1000 Max_Ch_Word_Length = 7 def filter_func(s): s = re.sub("\\[[^\\]]+\\]", "", s) s = re.sub("([^)]*\\)", "", s) s = re.sub("<[^>]*>", "", s) s = re.sub("\\{[^\\}]*\\}", "", s)
def render_text(self, outfd, data): # local_conf = Conf() # local_conf.config_no() # local_conf.start() j_test_path = '-Djava.class.path=/home/kong/JavaMemory/JDI/out/artifacts/JDI/JDI.jar' jpype.startJVM(jpype.getDefaultJVMPath(), j_test_path) tasks = self.calculate() if len(tasks) > 0: task = tasks[0] else: jpype.shutdownJVM() raise Exception("no task or wrong pid") # configuration self.fnames = ['add', 'sub'] self.vnames = [['x', 'y'], ['x', 'y']] self.vtypes = [[4, 4], [4, 4]] # ssh hostname = '10.108.164.232' port = 22 username = '******' password = '******' cmd = 'java -jar /home/vm/pyagent.jar ' + str(task.pid) ssh_res = ssh_cmd(hostname=hostname, port=port, username=username, password=password, cmd=cmd) if 'yes' not in ssh_res: print ssh_res raise Exception("no task or wrong pid") libnames = [] libbases = [] libs = [] name_set = set() for vma in task.get_proc_maps(): fname = vma.vm_name(task) if fname == "Anonymous Mapping": fname = "" if len(fname) > 0 and fname not in name_set: name_set.add(fname) lib = Library() lib.base = vma.vm_start lib.name = fname libnames.append(str(lib.name)) libbases.append(long(lib.base)) libs.append(lib) for lib in libs: if ".so" in lib.name or "java" in lib.name: print "base:", lib.base, "name:", lib.name threadsId = [] for thread in task.threads(): threadsId.append(long(thread.pid)) self.libnames = libnames self.libbases = libbases self.threadsId = threadsId self.currentTask = task self.libs = libs self.symbolDict = {} # symbol = volatility.plugins.linux.java.readelf.read_sym_offset("/usr/local/development/jdk1.7.0_79/jre/lib/amd64/server/libjvm.so") # self.symbolDict["/usr/local/development/jdk1.7.0_79/jre/lib/amd64/server/libjvm.so"] = symbol symbol = volatility.plugins.linux.java.readelf.read_sym_offset( "/home/kong/JavaMemory/jdk1.7.0_79/jre/lib/amd64/server/libjvm.so") self.symbolDict["/home/vm/jdk1.7.0_79/jre/lib/amd64/server/libjvm.so"] = symbol PyDump = jpype.JPackage('sun.tools.python').PyDump self.PyDump = PyDump method_dict = { 'getThreadsId': self.getThreadsId, 'getLibName': self.getLibName, 'getLibBase': self.getLibBase, 'lookUpByName': self.lookUpByName, 'readBytesFromProcess': self.readBytesFromProcess } jp = jpype.JProxy('sun.jvm.hotspot.debugger.linux.PythonMethodInterface', dict = method_dict) # java init PyDump.initVM(jp, int(task.pid)) self.first_fp_list = [] for index in range(1, 11): threadName = 'http-nio-8080-exec-' + str(index) first_fp = PyDump.initJavaFirstFPAddress(threadName, True) self.first_fp_list.append(first_fp) print threadName, first_fp # event self.event_front_1 = '<xml type="event" name="' self.event_front_2 = '">' self.event_middle_1 = '<' self.event_middle_2 = '>' self.event_middle_3 = '</' self.event_middle_4 = '>' self.event_end = '</xml>\r\n\r\n' self.client = None # tcpSocket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) # tcpSocket.setsockopt(socket.SOL_SOCKET, socket.SO_REUSEADDR, 1) # tcpSocket.bind(('', 6666)) # tcpSocket.listen(5) # while True: # try: # print "waiting for connection..." # client, addr = tcpSocket.accept() # print "...connected from:", addr # while True: # time.sleep(1) # for result in self.getEvent(first_fp, fnames, vnames, vtypes): # if result is not None: # print result # client.sendall(result) # except Exception, e: # print repr(e) # finally: # client.close() # tcpSocket.close() # self.conf = Conf() # self.conf.config_c(self.run_command, self.stop_command) # self.conf.start() count = 10 while count > 0: print "#######################" for first_fp in self.first_fp_list: inf = self.getEvent(first_fp, self.fnames, self.vnames, self.vtypes, self.client) count -= 1 PyDump.stop() jpype.shutdownJVM()
'-Djava.class.path=/Users/jennyhung/MathfreakData/School/OMSCS_ML/Assign2/abagail_py/ABAGAIL/ABAGAIL.jar' ) jp.java.lang.System.out.println("hello world") jp.java.func.nn.backprop.BackPropagationNetworkFactory jp.java.func.nn.backprop.RPROPUpdateRule jp.java.func.nn.backprop.BatchBackPropagationTrainer jp.java.shared.SumOfSquaresError jp.java.shared.DataSet jp.java.shared.Instance jp.java.opt.SimulatedAnnealing jp.java.opt.example.NeuralNetworkOptimizationProblem jp.java.opt.RandomizedHillClimbing jp.java.ga.StandardGeneticAlgorithm jp.java.func.nn.activation.RELU BackPropagationNetworkFactory = jp.JPackage( 'func').nn.backprop.BackPropagationNetworkFactory DataSet = jp.JPackage('shared').DataSet SumOfSquaresError = jp.JPackage('shared').SumOfSquaresError NeuralNetworkOptimizationProblem = jp.JPackage( 'opt').example.NeuralNetworkOptimizationProblem RandomizedHillClimbing = jp.JPackage('opt').RandomizedHillClimbing Instance = jp.JPackage('shared').Instance RELU = jp.JPackage('func').nn.activation.RELU INPUT_LAYER = 109 OUTPUT_LAYER = 1 TRAINING_ITERATIONS = 2001 OUTFILE = './NN_OUTPUT/RHC_LOG.txt' def get_all_data():
def bayesServer(): return jp.JPackage("com.bayesserver")
logger.info( "Attempting to start creating client for the following Web Service: " + str(url)) # The webservice is a soap webservice if servicetype == 'SOAP': logger.info("Setting up jpype variables") galaxyHomePath = str(os.environ.get('GALAXY_HOME')) jar_home = str(os.environ.get( 'GALAXY_HOME')) + '/tools/WebServiceToolWorkflow_REST_SOAP/engine' jarpath = os.path.join(os.path.abspath(jar_home), '') logger.info("Starting the JVM") jpype.startJVM(jpype.getDefaultJVMPath(), "-Djava.ext.dirs=%s" % jarpath) logger.info("JVM is up and running") toolCreatorPackage = jpype.JPackage( "edu.uga.WSExtension.AddingWebServiceAsTools") logger.info("Creating objects to create stand alone and workflow tool") standAloneToolCreator = toolCreatorPackage.CreatingWSDLToolAsStandalone( url, galaxyHomePath) logger.info("Object for stand alone tool has been created successfully") workflowToolCreator = toolCreatorPackage.CreatingWSDLToolAsWorkflow( url, galaxyHomePath) logger.info("Object for workflow tool has been created successfully") for operation in operations: if operation != '': logger.info("Creating tool stand alone and workflow tool for " + str(operation)) statusOfStandAlone = standAloneToolCreator.createTool(operation) logger.info("Stand alone tool created successfully " + str(statusOfStandAlone)) statusOfWorkflowTool = workflowToolCreator.createTool(operation)