def main(mask, intensity_image, min_area, max_area, min_cut_area, max_circularity, max_convexity, plot=False, selection_test_mode=False): '''Detects clumps in `mask` given criteria provided by the user and cuts them along the borders of watershed regions, which are determined based on the distance transform of `mask`. Parameters ---------- mask: numpy.ndarray[Union[numpy.int32, numpy.bool]] 2D binary or labele image encoding potential clumps intensity_image: numpy.ndarray[numpy.uint8 or numpy.uint16] 2D grayscale image with intensity values of the objects that should be detected min_area: int minimal area an object must have to be considered a clump max_area: int maximal area an object can have to be considered a clump min_cut_area: int minimal area an object must have (useful to prevent cuts that would result in too small objects) max_circularity: float maximal circularity an object can have to be considerd a clump max_convexity: float maximal convexity an object can have to be considerd a clump plot: bool, optional whether a plot should be generated selection_test_mode: bool, optional whether, instead of the normal plot, heatmaps should be generated that display values of the selection criteria *area*, *circularity* and *convexity* for each individual object in `mask` as well as the selected "clumps" based on the criteria provided by the user Returns ------- jtmodules.separate_clumps.Output ''' separated_mask = separate_clumped_objects(mask, min_cut_area, min_area, max_area, max_circularity, max_convexity) if plot: from jtlib import plotting if selection_test_mode: logger.info('create plot for selection test mode') labeled_mask, n_objects = mh.label(mask) f = Morphology(labeled_mask) values = f.extract() area_img = create_feature_image(values['Morphology_Area'].values, labeled_mask) convexity_img = create_feature_image( values['Morphology_Convexity'].values, labeled_mask) circularity_img = create_feature_image( values['Morphology_Circularity'].values, labeled_mask) area_colorscale = plotting.create_colorscale( 'Greens', n_objects, add_background=True, background_color='white') circularity_colorscale = plotting.create_colorscale( 'Blues', n_objects, add_background=True, background_color='white') convexity_colorscale = plotting.create_colorscale( 'Reds', n_objects, add_background=True, background_color='white') plots = [ plotting.create_float_image_plot(area_img, 'ul', colorscale=area_colorscale), plotting.create_float_image_plot( convexity_img, 'ur', colorscale=convexity_colorscale), plotting.create_float_image_plot( circularity_img, 'll', colorscale=circularity_colorscale), plotting.create_mask_image_plot(clumps_mask, 'lr'), ] figure = plotting.create_figure( plots, title=('Selection criteria: "area" (green), "convexity" (red) ' 'and "circularity" (blue)')) else: logger.info('create plot') cut_mask = (mask > 0) - (separated_mask > 0) clumps_mask = np.zeros(mask.shape, bool) initial_objects_label_image, n_initial_objects = mh.label(mask > 0) for i in range(1, n_initial_objects + 1): index = initial_objects_label_image == i if len(np.unique(separated_mask[index])) > 1: clumps_mask[index] = True n_objects = len(np.unique(separated_mask[separated_mask > 0])) colorscale = plotting.create_colorscale('Spectral', n=n_objects, permute=True, add_background=True) outlines = mh.morph.dilate(mh.labeled.bwperim(separated_mask > 0)) cutlines = mh.morph.dilate(mh.labeled.bwperim(cut_mask)) plots = [ plotting.create_mask_image_plot(separated_mask, 'ul', colorscale=colorscale), plotting.create_intensity_overlay_image_plot( intensity_image, outlines, 'ur'), plotting.create_mask_overlay_image_plot( clumps_mask, cutlines, 'll') ] figure = plotting.create_figure(plots, title='separated clumps') else: figure = str() return Output(separated_mask, figure)
def main(image, mask, threshold=25, mean_size=6, min_size=10, filter_type='log_2d', minimum_bead_intensity=150, z_step=0.333, pixel_size=0.1625, alpha=0, plot=False): '''Converts an image stack with labelled cell surface to a cell `volume` image Parameters ---------- image: numpy.ndarray[Union[numpy.uint8, numpy.uint16]] grayscale image in which beads should be detected (3D) mask: numpy.ndarray[Union[numpy.int32, numpy.bool]] binary or labeled image of cell segmentation (2D) threshold: int, optional intensity of bead in filtered image (default: ``25``) mean_size: int, optional mean size of bead (default: ``6``) min_size: int, optional minimal number of connected voxels per bead (default: ``10``) filter_type: str, optional filter used to emphasise the beads in 3D (options: ``log_2d`` (default) or ``log_3d``) minimum_bead_intensity: int, optional minimum intensity in the original image of an identified bead centre. Use to filter low intensity beads. z_step: float, optional distance between consecutive z-planes (um) (default: ``0.333``) pixel_size: float, optional size of pixel (um) (default: ``0.1625``) alpha: float, optional value of parameter for 3D alpha shape calculation (default: ``0``, no vertex filtering performed) plot: bool, optional whether a plot should be generated (default: ``False``) Returns ------- jtmodules.generate_volume_image.Output ''' # Check that there are cells identified in image if (np.max(mask) > 0): volume_image_calculated = True n_slices = image.shape[-1] logger.debug('input image has z-dimension %d', n_slices) # Remove high intensity pixels detect_image = image.copy() p = np.percentile(detect_image, 99.9) detect_image[detect_image > p] = p # Perform LoG filtering in 3D to emphasise beads if filter_type == 'log_2d': logger.info('using stacked 2D LoG filter to detect beads') f = -1 * log_2d(size=mean_size, sigma=float(mean_size - 1) / 3) filt = np.stack([f for _ in range(mean_size)], axis=2) elif filter_type == 'log_3d': logger.info('using 3D LoG filter to detect beads') filt = -1 * log_3d(mean_size, (float(mean_size - 1) / 3, float(mean_size - 1) / 3, 4 * float(mean_size - 1) / 3)) else: logger.info('using unfiltered image to detect beads') if filter_type == 'log_2d' or filter_type == 'log_3d': logger.debug('convolve image with filter kernel') detect_image = mh.convolve(detect_image.astype(float), filt) detect_image[detect_image < 0] = 0 logger.debug('threshold beads') labeled_beads, n_labels = mh.label(detect_image > threshold) logger.info('detected %d beads', n_labels) logger.debug('remove small beads') sizes = mh.labeled.labeled_size(labeled_beads) too_small = np.where(sizes < min_size) labeled_beads = mh.labeled.remove_regions(labeled_beads, too_small) mh.labeled.relabel(labeled_beads, inplace=True) logger.info( '%d beads remain after removing small beads', np.max(labeled_beads) ) logger.debug('localise beads in 3D') localised_beads = localise_bead_maxima_3D( image, labeled_beads, minimum_bead_intensity ) logger.debug('mask beads inside cells') '''NOTE: localised_beads.coordinate image is used only for beads outside cells and can therefore be modified here. For beads inside cells, localised_beads.coordinates are used instead. ''' # expand mask to ensure slide-beads are well away from cells slide = localised_beads.coordinate_image expand_mask = mh.dilate( A=mask > 0, Bc=np.ones([25,25], bool) ) slide[expand_mask] = 0 logger.debug('determine coordinates of slide surface') try: bottom_surface = slide_surface_params(slide) except InvalidSlideError: logger.error('slide surface calculation is invalid' + ' returning empty volume image') volume_image = np.zeros(shape=image[:,:,0].shape, dtype=image.dtype) figure = str() return Output(volume_image, figure) logger.debug('subtract slide surface to get absolute bead coordinates') bead_coords_abs = [] for i in range(len(localised_beads.coordinates)): bead_height = ( localised_beads.coordinates[i][2] - plane(localised_beads.coordinates[i][0], localised_beads.coordinates[i][1], bottom_surface.x) ) if bead_height > 0: bead_coords_abs.append( (localised_beads.coordinates[i][0], localised_beads.coordinates[i][1], bead_height) ) logger.debug('convert absolute bead coordinates to image') coord_image_abs = coordinate_list_to_array( bead_coords_abs, shape=image[:,:,0].shape, dtype=np.float32 ) filtered_coords_global = filter_vertices_per_cell_alpha_shape( coord_image_abs=coord_image_abs, mask=mask, alpha=alpha, z_step=z_step, pixel_size=pixel_size ) logger.info('interpolate cell surface') volume_image = interpolate_surface( coords=np.asarray(filtered_coords_global, dtype=np.uint16), output_shape=np.shape(image[:,:,0]), method='linear' ) volume_image = volume_image.astype(image.dtype) logger.debug('set regions outside mask to zero') volume_image[mask == 0] = 0 else: logger.warn( 'no objects in input mask, skipping cell volume calculation.' ) volume_image_calculated = False volume_image = np.zeros(shape=image[:,:,0].shape, dtype=image.dtype) if (plot and volume_image_calculated): logger.debug('convert bottom surface plane to image for plotting') dt = np.dtype(float) bottom_surface_image = np.zeros(slide.shape, dtype=dt) for ix in range(slide.shape[0]): for iy in range(slide.shape[1]): bottom_surface_image[ix, iy] = plane( ix, iy, bottom_surface.x) logger.info('create plot') from jtlib import plotting plots = [ plotting.create_intensity_image_plot( np.max(image, axis=-1), 'ul', clip=True ), plotting.create_float_image_plot( bottom_surface_image, 'll', clip=True ), plotting.create_intensity_image_plot( volume_image, 'ur', clip=True ) ] figure = plotting.create_figure( plots, title='Convert stack to volume image' ) else: figure = str() return Output(volume_image, figure)
def main(mask, feature, lower_threshold=None, upper_threshold=None, plot=False): '''Filters objects (connected components) based on the specified value range for a given `feature`. Parameters ---------- mask: numpy.ndarray[Union[numpy.bool, numpy.int32]] image that should be filtered feature: str name of the feature based on which the image should be filtered (options: ``{"area", "eccentricity", "circularity", "convecity"}``) lower_threshold: minimal `feature` value objects must have (default: ``None``; type depends on the chosen `feature`) upper_threshold: maximal `feature` value objects must have (default: ``None``; type depends on the chosen `feature`) plot: bool, optional whether a plot should be generated (default: ``False``) Returns ------- jtmodules.filter_objects.Output Raises ------ ValueError when both `lower_threshold` and `upper_threshold` are ``None`` ValueError when value of `feature` is not one of the supported features ''' if lower_threshold is None and upper_threshold is None: raise ValueError( 'Argument "lower_threshold" or "upper_threshold" must be provided. ' ) if feature not in SUPPORTED_FEATURES: raise ValueError( 'Argument "feature" must be one of the following: "%s".' % '", "'.join(SUPPORTED_FEATURES) ) name = 'Morphology_{0}'.format(feature.capitalize()) labeled_image = mh.label(mask > 0)[0] f = Morphology(labeled_image) measurement = f.extract()[name] values = measurement.values feature_image = create_feature_image(values, labeled_image) if not measurement.empty: if lower_threshold is None: lower_threshold = np.min(values) if upper_threshold is None: upper_threshold = np.max(values) logger.info( 'keep objects with "%s" values in the range [%d, %d]', feature, lower_threshold, upper_threshold ) condition_image = np.logical_or( feature_image < lower_threshold, feature_image > upper_threshold ) filtered_mask = labeled_image.copy() filtered_mask[condition_image] = 0 else: logger.warn('no objects detected in image') filtered_mask = labeled_image mh.labeled.relabel(filtered_mask, inplace=True) if plot: from jtlib import plotting plots = [ plotting.create_mask_image_plot(mask, 'ul'), plotting.create_float_image_plot(feature_image, 'ur'), plotting.create_mask_image_plot(filtered_mask, 'll'), ] n_removed = ( len(np.unique(labeled_image)) - len(np.unique(filtered_mask)) ) figure = plotting.create_figure( plots, title='Filtered for feature "{0}": {1} objects removed'.format( feature, n_removed ) ) else: figure = str() return Output(filtered_mask, figure)
def main(image, mask, threshold=1, min_area=3, mean_area=5, max_area=1000, clip_percentile=99.999, plot=False): '''Detects blobs in `image` using an implementation of `SExtractor <http://www.astromatic.net/software/sextractor>`_ [1]. The `image` is first convolved with a Laplacian of Gaussian filter of size `mean_area` to enhance blob-like structures. The enhanced image is then thresholded at `threshold` level and connected pixel components are subsequently deplended. Parameters ---------- image: numpy.ndarray[Union[numpy.uint8, numpy.uint16]] grayscale image in which blobs should be detected mask: numpy.ndarray[Union[numpy.int32, numpy.bool]] binary or labeled image that specifies pixel regions of interest in which blobs should be detected threshold: int, optional threshold level for pixel values in the convolved image (default: ``1``) min_area: int, optional minimal size a blob is allowed to have (default: ``3``) mean_area: int, optional estimated average size of a blob (default: ``5``) max_area: int, optional maximal size a blob is allowed to have to be subject to deblending; no attempt will be made to deblend blobs larger than `max_area` (default: ``100``) clip_percentile: float, optional clip intensity values in `image` above the given percentile; this may help in attenuating artifacts plot: bool, optional whether a plot should be generated (default: ``False``) Returns ------- jtmodules.detect_blobs.Output[Union[numpy.ndarray, str]] References ---------- .. [1] Bertin, E. & Arnouts, S. 1996: SExtractor: Software for source extraction, Astronomy & Astrophysics Supplement 317, 393 ''' logger.info('detect blobs above threshold {0}'.format(threshold)) detect_image = image.copy() p = np.percentile(image, clip_percentile) detect_image[image > p] = p # Enhance the image for blob detection by convoling it with a LOG filter f = -1 * log_2d(size=mean_area, sigma=float(mean_area - 1) / 3) detect_image = mh.convolve(detect_image.astype(float), f) detect_image[detect_image < 0] = 0 # Mask regions of too big blobs pre_blobs = mh.label(detect_image > threshold)[0] bad_blobs, n_bad = mh.labeled.filter_labeled(pre_blobs, min_size=max_area) logger.info( 'remove {0} blobs because they are bigger than {1} pixels'.format( n_bad, max_area)) detect_mask = np.invert(mask > 0) detect_mask[bad_blobs > 0] = True detect_image[bad_blobs > 0] = 0 logger.info('deblend blobs') blobs, centroids = detect_blobs(image=detect_image, mask=detect_mask, threshold=threshold, min_area=min_area) n = len(np.unique(blobs[blobs > 0])) logger.info('{0} blobs detected'.format(n)) if plot: logger.info('create plot') from jtlib import plotting colorscale = plotting.create_colorscale('Spectral', n=n, permute=True, add_background=True) plots = [ plotting.create_float_image_plot(detect_image, 'ul', clip=True), plotting.create_mask_image_plot(blobs, 'ur', colorscale=colorscale) ] figure = plotting.create_figure( plots, title=('detected #{0} blobs above threshold {1}' ' in LOG filtered image'.format(n, threshold))) else: figure = str() return Output(centroids, blobs, figure)
def main(mask, intensity_image, min_area, max_area, min_cut_area, max_circularity, max_convexity, plot=False, selection_test_mode=False): '''Detects clumps in `mask` given criteria provided by the user and cuts them along the borders of watershed regions, which are determined based on the distance transform of `mask`. Parameters ---------- mask: numpy.ndarray[Union[numpy.int32, numpy.bool]] 2D binary or labele image encoding potential clumps intensity_image: numpy.ndarray[numpy.uint8 or numpy.uint16] 2D grayscale image with intensity values of the objects that should be detected min_area: int minimal area an object must have to be considered a clump max_area: int maximal area an object can have to be considered a clump min_cut_area: int minimal area an object must have (useful to prevent cuts that would result in too small objects) max_circularity: float maximal circularity an object can have to be considerd a clump max_convexity: float maximal convexity an object can have to be considerd a clump plot: bool, optional whether a plot should be generated selection_test_mode: bool, optional whether, instead of the normal plot, heatmaps should be generated that display values of the selection criteria *area*, *circularity* and *convexity* for each individual object in `mask` as well as the selected "clumps" based on the criteria provided by the user Returns ------- jtmodules.separate_clumps.Output ''' separated_mask = separate_clumped_objects( mask, min_cut_area, min_area, max_area, max_circularity, max_convexity ) if plot: from jtlib import plotting if selection_test_mode: logger.info('create plot for selection test mode') labeled_mask, n_objects = mh.label(mask) f = Morphology(labeled_mask) values = f.extract() area_img = create_feature_image( values['Morphology_Area'].values, labeled_mask ) convexity_img = create_feature_image( values['Morphology_Convexity'].values, labeled_mask ) circularity_img = create_feature_image( values['Morphology_Circularity'].values, labeled_mask ) area_colorscale = plotting.create_colorscale( 'Greens', n_objects, add_background=True, background_color='white' ) circularity_colorscale = plotting.create_colorscale( 'Blues', n_objects, add_background=True, background_color='white' ) convexity_colorscale = plotting.create_colorscale( 'Reds', n_objects, add_background=True, background_color='white' ) plots = [ plotting.create_float_image_plot( area_img, 'ul', colorscale=area_colorscale ), plotting.create_float_image_plot( convexity_img, 'ur', colorscale=convexity_colorscale ), plotting.create_float_image_plot( circularity_img, 'll', colorscale=circularity_colorscale ), plotting.create_mask_image_plot( clumps_mask, 'lr' ), ] figure = plotting.create_figure( plots, title=( 'Selection criteria: "area" (green), "convexity" (red) ' 'and "circularity" (blue)' ) ) else: logger.info('create plot') cut_mask = (mask > 0) - (separated_mask > 0) clumps_mask = np.zeros(mask.shape, bool) initial_objects_label_image, n_initial_objects = mh.label(mask > 0) for i in range(1, n_initial_objects+1): index = initial_objects_label_image == i if len(np.unique(separated_mask[index])) > 1: clumps_mask[index] = True n_objects = len(np.unique(separated_mask[separated_mask > 0])) colorscale = plotting.create_colorscale( 'Spectral', n=n_objects, permute=True, add_background=True ) outlines = mh.morph.dilate(mh.labeled.bwperim(separated_mask > 0)) cutlines = mh.morph.dilate(mh.labeled.bwperim(cut_mask)) plots = [ plotting.create_mask_image_plot( separated_mask, 'ul', colorscale=colorscale ), plotting.create_intensity_overlay_image_plot( intensity_image, outlines, 'ur' ), plotting.create_mask_overlay_image_plot( clumps_mask, cutlines, 'll' ) ] figure = plotting.create_figure( plots, title='separated clumps' ) else: figure = str() return Output(separated_mask, figure)
def main(mask, intensity_image, min_area, max_area, min_cut_area, max_circularity, max_convexity, plot=False, selection_test_mode=False, selection_test_show_remaining=False, trimming=True): '''Detects clumps in `mask` given criteria provided by the user and cuts them along the borders of watershed regions, which are determined based on the distance transform of `mask`. Parameters ---------- mask: numpy.ndarray[Union[numpy.int32, numpy.bool]] 2D binary or labele image encoding potential clumps intensity_image: numpy.ndarray[numpy.uint8 or numpy.uint16] 2D grayscale image with intensity values of the objects that should be detected min_area: int minimal area an object must have to be considered a clump max_area: int maximal area an object can have to be considered a clump min_cut_area: int minimal area an object must have (useful to prevent cuts that would result in too small objects) max_circularity: float maximal circularity an object can have to be considerd a clump max_convexity: float maximal convexity an object can have to be considerd a clump plot: bool, optional whether a plot should be generated selection_test_mode: bool, optional whether, instead of the normal plot, heatmaps should be generated that display values of the selection criteria *area*, *circularity* and *convexity* for each individual object in `mask` as well as the selected "clumps" based on the criteria provided by the user selection_test_show_remaining: bool, optional whether the selection test plot should be made on the remaining image after the cuts were performed (helps to see why some objects were not cut, especially if there are complicated clumps that require multiple cuts). Defaults to false, thus showing the values in the original image trimming: bool some cuts may create a tiny third object. If this boolean is true, tertiary objects < trimming_threshold (10) pixels will be removed Returns ------- jtmodules.separate_clumps.Output ''' separated_label_image = separate_clumped_objects(mask, min_cut_area, min_area, max_area, max_circularity, max_convexity, allow_trimming=trimming) if plot: from jtlib import plotting clumps_mask = np.zeros(mask.shape, bool) initial_objects_label_image, n_initial_objects = mh.label(mask > 0) for n in range(1, n_initial_objects + 1): obj = (initial_objects_label_image == n) if len(np.unique(separated_label_image[obj])) > 1: clumps_mask[obj] = True cut_mask = (mask > 0) & (separated_label_image == 0) cutlines = mh.morph.dilate(mh.labeled.bwperim(cut_mask)) if selection_test_mode: logger.info('create plot for selection test mode') # Check if selection_test_show_remaining is active # If so, show values on processed image, not original if selection_test_show_remaining: labeled_mask, n_objects = mh.label(separated_label_image > 0) logger.info('Selection test mode plot with processed image') else: labeled_mask, n_objects = mh.label(mask) f = Morphology(labeled_mask) values = f.extract() area_img = create_feature_image(values['Morphology_Area'].values, labeled_mask) convexity_img = create_feature_image( values['Morphology_Convexity'].values, labeled_mask) circularity_img = create_feature_image( values['Morphology_Circularity'].values, labeled_mask) plots = [ plotting.create_float_image_plot(area_img, 'ul'), plotting.create_float_image_plot(convexity_img, 'ur'), plotting.create_float_image_plot(circularity_img, 'll'), plotting.create_mask_overlay_image_plot( clumps_mask, cutlines, 'lr'), ] figure = plotting.create_figure( plots, title=('Selection criteria:' ' "area" (top left),' ' "convexity" (top-right),' ' and "circularity" (bottom-left);' ' cuts made (bottom right).')) else: logger.info('create plot') n_objects = len( np.unique(separated_label_image[separated_label_image > 0])) colorscale = plotting.create_colorscale('Spectral', n=n_objects, permute=True, add_background=True) outlines = mh.morph.dilate( mh.labeled.bwperim(separated_label_image > 0)) plots = [ plotting.create_mask_image_plot(separated_label_image, 'ul', colorscale=colorscale), plotting.create_intensity_overlay_image_plot( intensity_image, outlines, 'ur'), plotting.create_mask_overlay_image_plot( clumps_mask, cutlines, 'll') ] figure = plotting.create_figure(plots, title='separated clumps') else: figure = str() return Output(separated_label_image, figure)
def main(image, mask, threshold=1, min_area=3, mean_area=5, max_area=1000, clip_percentile=99.999, plot=False): '''Detects blobs in `image` using an implementation of `SExtractor <http://www.astromatic.net/software/sextractor>`_ [1]. The `image` is first convolved with a Laplacian of Gaussian filter of size `mean_area` to enhance blob-like structures. The enhanced image is then thresholded at `threshold` level and connected pixel components are subsequently deplended. Parameters ---------- image: numpy.ndarray[Union[numpy.uint8, numpy.uint16]] grayscale image in which blobs should be detected mask: numpy.ndarray[Union[numpy.int32, numpy.bool]] binary or labeled image that specifies pixel regions of interest in which blobs should be detected threshold: int, optional threshold level for pixel values in the convolved image (default: ``1``) min_area: int, optional minimal size a blob is allowed to have (default: ``3``) mean_area: int, optional estimated average size of a blob (default: ``5``) max_area: int, optional maximal size a blob is allowed to have to be subject to deblending; no attempt will be made to deblend blobs larger than `max_area` (default: ``100``) clip_percentile: float, optional clip intensity values in `image` above the given percentile; this may help in attenuating artifacts plot: bool, optional whether a plot should be generated (default: ``False``) Returns ------- jtmodules.detect_blobs.Output[Union[numpy.ndarray, str]] References ---------- .. [1] Bertin, E. & Arnouts, S. 1996: SExtractor: Software for source extraction, Astronomy & Astrophysics Supplement 317, 393 ''' logger.info('detect blobs above threshold {0}'.format(threshold)) detect_image = image.copy() p = np.percentile(image, clip_percentile) detect_image[image > p] = p # Enhance the image for blob detection by convoling it with a LOG filter f = -1 * log_2d(size=mean_area, sigma=float(mean_area - 1)/3) detect_image = mh.convolve(detect_image.astype(float), f) detect_image[detect_image < 0] = 0 # Mask regions of too big blobs pre_blobs = mh.label(detect_image > threshold)[0] bad_blobs, n_bad = mh.labeled.filter_labeled(pre_blobs, min_size=max_area) logger.info( 'remove {0} blobs because they are bigger than {1} pixels'.format( n_bad, max_area ) ) detect_mask = np.invert(mask > 0) detect_mask[bad_blobs > 0] = True detect_image[bad_blobs > 0] = 0 logger.info('deblend blobs') blobs, centroids = detect_blobs( image=detect_image, mask=detect_mask, threshold=threshold, min_area=min_area ) n = len(np.unique(blobs[blobs>0])) logger.info('{0} blobs detected'.format(n)) if plot: logger.info('create plot') from jtlib import plotting colorscale = plotting.create_colorscale( 'Spectral', n=n, permute=True, add_background=True ) plots = [ plotting.create_float_image_plot( detect_image, 'ul', clip=True ), plotting.create_mask_image_plot( blobs, 'ur', colorscale=colorscale ) ] figure = plotting.create_figure( plots, title=( 'detected #{0} blobs above threshold {1}' ' in LOG filtered image'.format(n, threshold) ) ) else: figure = str() return Output(centroids, blobs, figure)