def evaluate_model(self, k, max_warping_window, train_data, train_label, test_data, test_label): print '--------------------------' print '--------------------------\n' print 'Running for k = ', k print 'Running for w = ', max_warping_window model = KnnDtw(k_neighbours = k, max_warping_window = max_warping_window) model.fit(train_data, train_label) predicted_label, probability = model.predict(test_data) print '\nPredicted : ', predicted_label print 'Actual : ', test_label accuracy, precision, recall, f1score = evaluate(self.labels, predicted_label, test_label) print 'Avg/Total Accuracy :', accuracy print 'Avg/Total Precision :', precision print 'Avg/Total Recall :', recall print 'Avg/Total F1 Score :', f1score
def predict(k, w, train, test): click.echo('--- Predicting a label ---') #click.echo('Predicting with k=%d and w=%d.' % (k,w)) train_data, train_label = load_labelled(train) test_data = load_test(test) click.echo(' - k : %d ' % k) click.echo(' - w : %d ' % w) click.echo(' - train : %s ' % train) click.echo(' - test : %s ' % test) click.echo('\nRunning...') model = KnnDtw(k_neighbours=k, max_warping_window=w) model.fit(train_data, train_label) predicted_label, probability = model.predict(test_data) click.echo('\nPredicted label : %s ' % str(predicted_label)) click.echo('\nDone.')
def evaluate_model(self, k, max_warping_window, train_data, train_label, test_data, test_label): print '--------------------------' print '--------------------------\n' print 'Running for k = ', k print 'Running for w = ', max_warping_window model = KnnDtw(k_neighbours=k, max_warping_window=max_warping_window) model.fit(train_data, train_label) predicted_label, probability = model.predict(test_data) print '\nPredicted : ', predicted_label print 'Actual : ', test_label accuracy, precision, recall, f1score = evaluate( self.labels, predicted_label, test_label) print 'Avg/Total Accuracy :', accuracy print 'Avg/Total Precision :', precision print 'Avg/Total Recall :', recall print 'Avg/Total F1 Score :', f1score
def online_identification(k, w, window_size, train, test): click.echo('\n--- Online flight degradation identification ---') train_csv = load_csvs(train, should_preprocess=False) test_csv = load_csvs(test, should_preprocess=False) click.echo(' - k : %d ' % k) click.echo(' - w : %d ' % w) click.echo(' - train : %s ' % train) click.echo(' - test : %s ' % test) click.echo('\nRunning...\n') # For Test last_second = test_csv[0]['data']['seconds'].iloc[-1] #print('[TEST] Last second: {}'.format(last_second)) for time_window in range(0, last_second, window_size): click.echo('Time window is: %d ' % time_window) train_window = get_windows(train_csv, time_window, time_window + window_size - 1) test_window = get_windows(test_csv, time_window, time_window + window_size - 1) train_data, train_label = window_to_lists(train_window, 'pose_position_z') test_data, test_label = window_to_lists(test_window, 'pose_position_z') model = KnnDtw(k_neighbours = k, max_warping_window = w) model.fit(np.array(train_data), np.array(train_label)) #click.echo(train_label) predicted_label, probability = model.predict(test_data, parallel=True) click.echo('Predicted label : %s ' % str(predicted_label)) click.echo('\n') click.echo('\nDone.')
def predict(k, w, train, test): click.echo('--- Predicting a label ---') #click.echo('Predicting with k=%d and w=%d.' % (k,w)) train_data, train_label = load_labelled(train) test_data = load_test(test) click.echo(' - k : %d ' % k) click.echo(' - w : %d ' % w) click.echo(' - train : %s ' % train) click.echo(' - test : %s ' % test) click.echo('\nRunning...') model = KnnDtw(k_neighbours = k, max_warping_window = w) model.fit(train_data, train_label) predicted_label, probability = model.predict(test_data) click.echo('\nPredicted label : %s ' % str(predicted_label)) click.echo('\nDone.')