def compute_x_ks(points, k_function): x_ks = [] t = points[1] for point in points: x = np.subtract(point, t) #print len(k_function(point)) x_ks.append(np.subtract(x, k_function(point))) t = point return x_ks
def compute_x_ks(points, k_function): x_ks = [] t = points[1] for point in points: x=np.subtract(point, t) #print len(k_function(point)) x_ks.append(np.subtract(x, k_function(point))) t = point return x_ks
def gradient_function(point, k_function, g_function): dimension = len(point) gradient = np.zeros(dimension) k_vector = k_function(point) g_matrix = g_function(point) # print len(k_function(point)) #m,n=g_matrix.shape for i in range(dimension): gradient[i] = k_vector[i] for j in range(3): gradient[i] += math.sqrt( 2.0 * 0.0001) * g_matrix[j][i] * np.random.normal(0, 0.001) return gradient
def gradient_function(point,k_function,g_function): dimension = len(point) gradient = np.zeros(dimension) k_vector = k_function(point) g_matrix = g_function(point) # print len(k_function(point)) #m,n=g_matrix.shape for i in range(dimension): gradient[i] = k_vector[i] for j in range(3): gradient[i] += math.sqrt(2.0*0.0001)*g_matrix[j][i]*np.random.normal(0, 0.001) return gradient