def lip_segmentation2(inputRawImage, featureImage, inputLabel): retLabel = inputLabel width, height = retLabel.shape for i in range(width): for j in range(height): retLabel[i][j] == 0 for i in range(width): for j in range(height): retLabel[i][j] = 255 * math.exp( featureImage[i][j][0]) / (math.exp(featureImage[i][j][0]) + math.exp(featureImage[i][j][1])) print retLabel[i][j] if (retLabel[i][j] > 128): retLabel[i][j] = (retLabel[i][j] - 128) * 2 else: retLabel[i][j] = 0 return 0, retLabel features = extract_feature2(inputRawImage, featureImage, inputLabel) center, clusterResult = kMeans.kMeans(mat(features), 2) distance = sqrt(sum(power(center[0, 2:] - center[1, 2:], 2))) for i in range(len(clusterResult)): x = features[i][0] y = features[i][1] if distance > 0: retLabel[x][y] = clusterResult[i, 0] + 1 else: retLabel[x][y] = 2 return distance, retLabel
def lip_segmentation(inputRawImage, inputLabel): retLabel = inputLabel width, height = retLabel.shape for i in range(width): for j in range(height): retLabel[i][j] == 0 features = extract_feature(inputRawImage, inputLabel) center, clusterResult = kMeans.kMeans(mat(features), 2) distance = sqrt(sum(power(center[0, 2:] - center[1, 2:], 2))) for i in range(len(clusterResult)): x = features[i][0] y = features[i][1] if distance > 0: retLabel[x][y] = clusterResult[i, 0] + 1 else: retLabel[x][y] = 2 return distance, retLabel
while loop: print_menu() try: choice = int(input(' Enter your choice [1-5]: ')) except Exception: print(' Enter valid choice!') choice = 6 if choice == 1: print( '\n K-Means Clustering technique is used to group unrealated data.' '\n For example : Unsupervised learning model (i.e. no additional information provided to work on) like where rich people lives' ) input(' Press enter to proceed to plot') kMeans() elif choice == 2: print( '\n Naive Bayes is used for classifying data.' '\n For example : Supervised learning model (i.e. making action according to previous deduction) like drug-test results' ) input(' Press enter to proceed to result') nBayes() elif choice == 3: print( '\n Decision Tree is used for resolving to get conclusion from past decisions.' '\n For example : Supervised learning model (i.e. making action according to previous deduction) like Should i play outside ?' ) input(' Press enter to proceed to get decision tree')
if (not sum(dataSet[x])): del dataSet[x] t = list(userdata.keys()) for x in t: if (not sum(userdata[x])): del userdata[x] centroids = [] for x in range(9): centroids.append(dataSet[x]) print(len(dataSet)) dataSet = k_means.mat(dataSet) centroids = k_means.kMeans(dataSet, 9, k_means.mat(centroids)) fl = [] for x in range(9): fl.append(open('sort/' + str(x) + '.txt', 'w', encoding='utf-8')) for x in userdata: num = 0 distance = k_means.distEclud(centroids[0], userdata[x]) for i in range(1, 9): if (k_means.distEclud(centroids[i], userdata[x]) < distance): distance = k_means.distEclud(centroids[i], userdata[x]) num = i fl[num].write(x + '\n') for x in range(9):