def test_failed_group_join(self): client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) subscription = SubscriptionState("latest") subscription.subscribe(topics=("topic1",)) coordinator = GroupCoordinator(client, subscription, loop=self.loop, retry_backoff_ms=10) yield from client.bootstrap() yield from self.wait_topic(client, "topic1") mocked = mock.MagicMock() coordinator._client = mocked # no exception expected, just wait mocked.send.side_effect = Errors.GroupLoadInProgressError() yield from coordinator._perform_group_join() self.assertEqual(coordinator.need_rejoin(), True) mocked.send.side_effect = Errors.InvalidGroupIdError() yield from coordinator._perform_group_join() self.assertEqual(coordinator.need_rejoin(), True) # no exception expected, member_id should be reseted coordinator.member_id = "some_invalid_member_id" mocked.send.side_effect = Errors.UnknownMemberIdError() yield from coordinator._perform_group_join() self.assertEqual(coordinator.need_rejoin(), True) self.assertEqual(coordinator.member_id, JoinGroupRequest.UNKNOWN_MEMBER_ID) # no exception expected, coordinator_id should be reseted coordinator.coordinator_id = "some_id" mocked.send.side_effect = Errors.GroupCoordinatorNotAvailableError() yield from coordinator._perform_group_join() self.assertEqual(coordinator.need_rejoin(), True) self.assertEqual(coordinator.coordinator_id, None) yield from client.close()
def test_get_offsets(self): client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) yield from client.bootstrap() subscription = SubscriptionState('earliest') subscription.subscribe(topics=('topic1',)) coordinator = GroupCoordinator( client, subscription, loop=self.loop, group_id='getoffsets-group') yield from self.wait_topic(client, 'topic1') producer = AIOKafkaProducer( loop=self.loop, bootstrap_servers=self.hosts) yield from producer.start() yield from producer.send('topic1', b'first msg', partition=0) yield from producer.send('topic1', b'second msg', partition=1) yield from producer.send('topic1', b'third msg', partition=1) yield from producer.stop() yield from coordinator.ensure_active_group() offsets = {TopicPartition('topic1', 0): OffsetAndMetadata(1, ''), TopicPartition('topic1', 1): OffsetAndMetadata(2, '')} yield from coordinator.commit_offsets(offsets) self.assertEqual(subscription.all_consumed_offsets(), {}) subscription.seek(('topic1', 0), 0) subscription.seek(('topic1', 1), 0) yield from coordinator.refresh_committed_offsets() self.assertEqual(subscription.assignment[('topic1', 0)].committed, 1) self.assertEqual(subscription.assignment[('topic1', 1)].committed, 2) yield from coordinator.close() yield from client.close()
def test_coordinator_ensure_active_group_on_expired_membership(self): # Do not fail ensure_active_group() if group membership has expired client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) yield from client.bootstrap() yield from self.wait_topic(client, 'topic1') subscription = SubscriptionState('earliest') subscription.subscribe(topics=('topic1', )) coordinator = GroupCoordinator(client, subscription, loop=self.loop, group_id='test-offsets-group') yield from coordinator.ensure_active_group() # during OffsetCommit, UnknownMemberIdError is raised offsets = {TopicPartition('topic1', 0): OffsetAndMetadata(1, '')} with mock.patch('aiokafka.errors.for_code') as mocked: mocked.return_value = Errors.UnknownMemberIdError with self.assertRaises(Errors.UnknownMemberIdError): yield from coordinator.commit_offsets(offsets) self.assertEqual(subscription.needs_partition_assignment, True) # same exception is raised during ensure_active_group()'s call to # commit_offsets() via _on_join_prepare() but doesn't break this method with mock.patch.object(coordinator, "commit_offsets") as mocked: @asyncio.coroutine def mock_commit_offsets(*args, **kwargs): raise Errors.UnknownMemberIdError() mocked.side_effect = mock_commit_offsets yield from coordinator.ensure_active_group() yield from coordinator.close() yield from client.close()
def test_subscribe_pattern(self): client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) yield from client.bootstrap() test_listener = RebalanceListenerForTest() subscription = SubscriptionState('latest') subscription.subscribe(pattern='st-topic*', listener=test_listener) coordinator = GroupCoordinator( client, subscription, loop=self.loop, group_id='subs-pattern-group') yield from self.wait_topic(client, 'st-topic1') yield from self.wait_topic(client, 'st-topic2') yield from coordinator.ensure_active_group() self.assertNotEqual(coordinator.coordinator_id, None) self.assertEqual(coordinator.rejoin_needed, False) tp_list = subscription.assigned_partitions() assigned = set([('st-topic1', 0), ('st-topic1', 1), ('st-topic2', 0), ('st-topic2', 1)]) self.assertEqual(tp_list, assigned) self.assertEqual(test_listener.revoked, [set([])]) self.assertEqual(test_listener.assigned, [assigned]) yield from coordinator.close() yield from client.close()
def test_coordinator_subscription_append_on_rebalance(self): # same as above, but with adding topics instead of replacing them client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) yield from client.bootstrap() yield from self.wait_topic(client, 'topic1') yield from self.wait_topic(client, 'topic2') subscription = SubscriptionState('earliest') subscription.subscribe(topics=('topic1',)) coordinator = GroupCoordinator( client, subscription, loop=self.loop, group_id='race-rebalance-subscribe-append', heartbeat_interval_ms=20000000) _perform_assignment = coordinator._perform_assignment with mock.patch.object(coordinator, '_perform_assignment') as mocked: def _new(*args, **kw): # Change the subscription to different topic before we finish # rebalance res = _perform_assignment(*args, **kw) subscription.subscribe(topics=('topic1', 'topic2', )) client.set_topics(('topic1', 'topic2', )) return res mocked.side_effect = _new yield from coordinator.ensure_active_group() self.assertEqual(subscription.needs_partition_assignment, False) topics = set([tp.topic for tp in subscription.assignment]) self.assertEqual(topics, {'topic1', 'topic2'}) yield from coordinator.close() yield from client.close()
def test_subscribe_pattern(self): client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) yield from client.bootstrap() test_listener = RebalanceListenerForTest() subscription = SubscriptionState('latest') subscription.subscribe(pattern='st-topic*', listener=test_listener) coordinator = GroupCoordinator(client, subscription, loop=self.loop, group_id='subs-pattern-group') yield from self.wait_topic(client, 'st-topic1') yield from self.wait_topic(client, 'st-topic2') yield from coordinator.ensure_active_group() self.assertNotEqual(coordinator.coordinator_id, None) self.assertEqual(coordinator.rejoin_needed, False) tp_list = subscription.assigned_partitions() assigned = set([('st-topic1', 0), ('st-topic1', 1), ('st-topic2', 0), ('st-topic2', 1)]) self.assertEqual(tp_list, assigned) self.assertEqual(test_listener.revoked, [set([])]) self.assertEqual(test_listener.assigned, [assigned]) yield from coordinator.close() yield from client.close()
def test_failed_sync_group(self): client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) subscription = SubscriptionState("latest") subscription.subscribe(topics=("topic1",)) coordinator = GroupCoordinator(client, subscription, loop=self.loop, heartbeat_interval_ms=20000) with self.assertRaises(GroupCoordinatorNotAvailableError): yield from coordinator._on_join_follower() mocked = mock.MagicMock() coordinator._client = mocked coordinator.member_id = "some_invalid_member_id" coordinator.coordinator_unknown = asyncio.coroutine(lambda: False) mocked.send.side_effect = Errors.UnknownMemberIdError() with self.assertRaises(Errors.UnknownMemberIdError): yield from coordinator._on_join_follower() self.assertEqual(coordinator.member_id, JoinGroupRequest.UNKNOWN_MEMBER_ID) mocked.send.side_effect = Errors.NotCoordinatorForGroupError() coordinator.coordinator_id = "some_id" with self.assertRaises(Errors.NotCoordinatorForGroupError): yield from coordinator._on_join_follower() self.assertEqual(coordinator.coordinator_id, None) mocked.send.side_effect = KafkaError() with self.assertRaises(KafkaError): yield from coordinator._on_join_follower() # client sends LeaveGroupRequest to group coordinator # if generation > 0 (means that client is a member of group) # expecting no exception in this case (error should be ignored in close # method) coordinator.generation = 33 yield from coordinator.close()
def test_get_offsets(self): client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) yield from client.bootstrap() subscription = SubscriptionState("earliest") subscription.subscribe(topics=("topic1",)) coordinator = GroupCoordinator(client, subscription, loop=self.loop, group_id="getoffsets-group") yield from self.wait_topic(client, "topic1") producer = AIOKafkaProducer(loop=self.loop, bootstrap_servers=self.hosts) yield from producer.start() yield from producer.send("topic1", b"first msg", partition=0) yield from producer.send("topic1", b"second msg", partition=1) yield from producer.send("topic1", b"third msg", partition=1) yield from producer.stop() yield from coordinator.ensure_active_group() offsets = { TopicPartition("topic1", 0): OffsetAndMetadata(1, ""), TopicPartition("topic1", 1): OffsetAndMetadata(2, ""), } yield from coordinator.commit_offsets(offsets) self.assertEqual(subscription.all_consumed_offsets(), {}) subscription.seek(("topic1", 0), 0) subscription.seek(("topic1", 1), 0) yield from coordinator.refresh_committed_offsets() self.assertEqual(subscription.assignment[("topic1", 0)].committed, 1) self.assertEqual(subscription.assignment[("topic1", 1)].committed, 2) yield from coordinator.close() yield from client.close()
def test_coordinator_workflow(self): client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) yield from client.bootstrap() yield from self.wait_topic(client, 'topic1') yield from self.wait_topic(client, 'topic2') subscription = SubscriptionState('latest') subscription.subscribe(topics=('topic1', 'topic2')) coordinator = GroupCoordinator( client, subscription, loop=self.loop, session_timeout_ms=10000, heartbeat_interval_ms=500, retry_backoff_ms=100) self.assertEqual(coordinator.coordinator_id, None) self.assertEqual(coordinator.rejoin_needed, True) yield from coordinator.ensure_coordinator_known() self.assertNotEqual(coordinator.coordinator_id, None) yield from coordinator.ensure_active_group() self.assertNotEqual(coordinator.coordinator_id, None) self.assertEqual(coordinator.rejoin_needed, False) tp_list = subscription.assigned_partitions() self.assertEqual(tp_list, set([('topic1', 0), ('topic1', 1), ('topic2', 0), ('topic2', 1)])) # start second coordinator client2 = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) yield from client2.bootstrap() subscription2 = SubscriptionState('latest') subscription2.subscribe(topics=('topic1', 'topic2')) coordinator2 = GroupCoordinator( client2, subscription2, loop=self.loop, session_timeout_ms=10000, heartbeat_interval_ms=500, retry_backoff_ms=100) yield from coordinator2.ensure_active_group() yield from coordinator.ensure_active_group() tp_list = subscription.assigned_partitions() self.assertEqual(len(tp_list), 2) tp_list2 = subscription2.assigned_partitions() self.assertEqual(len(tp_list2), 2) tp_list |= tp_list2 self.assertEqual(tp_list, set([('topic1', 0), ('topic1', 1), ('topic2', 0), ('topic2', 1)])) yield from coordinator.close() yield from client.close() yield from asyncio.sleep(0.6, loop=self.loop) # wait heartbeat yield from coordinator2.ensure_active_group() tp_list = subscription2.assigned_partitions() self.assertEqual(tp_list, set([('topic1', 0), ('topic1', 1), ('topic2', 0), ('topic2', 1)])) yield from coordinator2.close() yield from client2.close()
def test_failed_broker_conn(self): client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) subscription = SubscriptionState('latest') subscription.subscribe(topics=('topic1', )) coordinator = GroupCoordinator(client, subscription, loop=self.loop) with self.assertRaises(NoBrokersAvailable): yield from coordinator.ensure_coordinator_known()
def test_with_nocommit_support(self): client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) subscription = SubscriptionState('latest') subscription.subscribe(topics=('topic1',)) coordinator = GroupCoordinator( client, subscription, loop=self.loop, enable_auto_commit=False) self.assertEqual(coordinator._auto_commit_task, None)
def test_failed_broker_conn(self): client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) subscription = SubscriptionState("latest") subscription.subscribe(topics=("topic1",)) coordinator = GroupCoordinator(client, subscription, loop=self.loop) with self.assertRaises(NoBrokersAvailable): yield from coordinator.ensure_coordinator_known()
def test_offsets_failed_scenarios(self): client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) yield from client.bootstrap() yield from self.wait_topic(client, 'topic1') subscription = SubscriptionState('earliest') subscription.subscribe(topics=('topic1', )) coordinator = GroupCoordinator(client, subscription, loop=self.loop, group_id='test-offsets-group') yield from coordinator.ensure_active_group() offsets = {TopicPartition('topic1', 0): OffsetAndMetadata(1, '')} yield from coordinator.commit_offsets(offsets) with mock.patch('aiokafka.errors.for_code') as mocked: mocked.return_value = Errors.GroupAuthorizationFailedError with self.assertRaises(Errors.GroupAuthorizationFailedError): yield from coordinator.commit_offsets(offsets) mocked.return_value = Errors.TopicAuthorizationFailedError with self.assertRaises(Errors.TopicAuthorizationFailedError): yield from coordinator.commit_offsets(offsets) mocked.return_value = Errors.InvalidCommitOffsetSizeError with self.assertRaises(Errors.InvalidCommitOffsetSizeError): yield from coordinator.commit_offsets(offsets) mocked.return_value = Errors.GroupLoadInProgressError with self.assertRaises(Errors.GroupLoadInProgressError): yield from coordinator.commit_offsets(offsets) mocked.return_value = Errors.RebalanceInProgressError with self.assertRaises(Errors.RebalanceInProgressError): yield from coordinator.commit_offsets(offsets) self.assertEqual(subscription.needs_partition_assignment, True) subscription.needs_partition_assignment = False mocked.return_value = Errors.UnknownMemberIdError with self.assertRaises(Errors.UnknownMemberIdError): yield from coordinator.commit_offsets(offsets) self.assertEqual(subscription.needs_partition_assignment, True) mocked.return_value = KafkaError with self.assertRaises(KafkaError): yield from coordinator.commit_offsets(offsets) mocked.return_value = Errors.NotCoordinatorForGroupError with self.assertRaises(Errors.NotCoordinatorForGroupError): yield from coordinator.commit_offsets(offsets) self.assertEqual(coordinator.coordinator_id, None) with self.assertRaises(Errors.GroupCoordinatorNotAvailableError): yield from coordinator.commit_offsets(offsets) yield from coordinator.close() yield from client.close()
def test_coordinator_metadata_update_during_rebalance(self): # Race condition where client.set_topics start MetadataUpdate, but it # fails to arrive before leader performed assignment # Just ensure topics are created client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) yield from client.bootstrap() yield from self.wait_topic(client, 'topic1') yield from self.wait_topic(client, 'topic2') yield from client.close() client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) yield from client.bootstrap() self.add_cleanup(client.close) subscription = SubscriptionState('earliest') client.set_topics(["topic1"]) subscription.subscribe(topics=('topic1', )) coordinator = GroupCoordinator( client, subscription, loop=self.loop, group_id='race-rebalance-metadata-update', heartbeat_interval_ms=20000000) self.add_cleanup(coordinator.close) yield from coordinator.ensure_active_group() # Check that topic's partitions are properly assigned self.assertEqual(subscription.needs_partition_assignment, False) self.assertEqual( set(subscription.assignment.keys()), {TopicPartition("topic1", 0), TopicPartition("topic1", 1)}) _metadata_update = client._metadata_update with mock.patch.object(client, '_metadata_update') as mocked: @asyncio.coroutine def _new(*args, **kw): # Just make metadata updates a bit more slow for test # robustness yield from asyncio.sleep(0.5, loop=self.loop) res = yield from _metadata_update(*args, **kw) return res mocked.side_effect = _new subscription.subscribe(topics=('topic2', )) client.set_topics(('topic2', )) yield from coordinator.ensure_active_group() self.assertEqual(subscription.needs_partition_assignment, False) self.assertEqual( set(subscription.assignment.keys()), {TopicPartition("topic2", 0), TopicPartition("topic2", 1)})
def test_failed_group_join(self): client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) subscription = SubscriptionState('latest') subscription.subscribe(topics=('topic1', )) coordinator = GroupCoordinator(client, subscription, loop=self.loop, retry_backoff_ms=10) @asyncio.coroutine def do_rebalance(): rebalance = CoordinatorGroupRebalance( coordinator, coordinator.group_id, coordinator.coordinator_id, subscription.subscription, coordinator._assignors, coordinator._session_timeout_ms, coordinator._retry_backoff_ms, loop=self.loop) yield from rebalance.perform_group_join() yield from client.bootstrap() yield from self.wait_topic(client, 'topic1') mocked = mock.MagicMock() coordinator._client = mocked # no exception expected, just wait mocked.send.side_effect = Errors.GroupLoadInProgressError() yield from do_rebalance() self.assertEqual(coordinator.need_rejoin(), True) mocked.send.side_effect = Errors.InvalidGroupIdError() with self.assertRaises(Errors.InvalidGroupIdError): yield from do_rebalance() self.assertEqual(coordinator.need_rejoin(), True) # no exception expected, member_id should be reseted coordinator.member_id = 'some_invalid_member_id' mocked.send.side_effect = Errors.UnknownMemberIdError() yield from do_rebalance() self.assertEqual(coordinator.need_rejoin(), True) self.assertEqual(coordinator.member_id, JoinGroupRequest.UNKNOWN_MEMBER_ID) # no exception expected, coordinator_id should be reseted coordinator.coordinator_id = 'some_id' mocked.send.side_effect = Errors.GroupCoordinatorNotAvailableError() yield from do_rebalance() self.assertEqual(coordinator.need_rejoin(), True) self.assertEqual(coordinator.coordinator_id, None) yield from client.close()
def test_failed_sync_group(self): client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) subscription = SubscriptionState('latest') subscription.subscribe(topics=('topic1', )) coordinator = GroupCoordinator(client, subscription, loop=self.loop, heartbeat_interval_ms=20000) @asyncio.coroutine def do_sync_group(): rebalance = CoordinatorGroupRebalance( coordinator, coordinator.group_id, coordinator.coordinator_id, subscription.subscription, coordinator._assignors, coordinator._session_timeout_ms, coordinator._retry_backoff_ms, loop=self.loop) yield from rebalance._on_join_follower() with self.assertRaises(GroupCoordinatorNotAvailableError): yield from do_sync_group() mocked = mock.MagicMock() coordinator._client = mocked coordinator.member_id = 'some_invalid_member_id' coordinator.coordinator_unknown = asyncio.coroutine(lambda: False) mocked.send.side_effect = Errors.UnknownMemberIdError() with self.assertRaises(Errors.UnknownMemberIdError): yield from do_sync_group() self.assertEqual(coordinator.member_id, JoinGroupRequest.UNKNOWN_MEMBER_ID) mocked.send.side_effect = Errors.NotCoordinatorForGroupError() coordinator.coordinator_id = 'some_id' with self.assertRaises(Errors.NotCoordinatorForGroupError): yield from do_sync_group() self.assertEqual(coordinator.coordinator_id, None) mocked.send.side_effect = KafkaError() with self.assertRaises(KafkaError): yield from do_sync_group() # client sends LeaveGroupRequest to group coordinator # if generation > 0 (means that client is a member of group) # expecting no exception in this case (error should be ignored in close # method) coordinator.generation = 33 yield from coordinator.close()
def test_offsets_failed_scenarios(self): client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) yield from client.bootstrap() yield from self.wait_topic(client, 'topic1') subscription = SubscriptionState('earliest') subscription.subscribe(topics=('topic1',)) coordinator = GroupCoordinator( client, subscription, loop=self.loop, group_id='test-offsets-group') yield from coordinator.ensure_active_group() offsets = {TopicPartition('topic1', 0): OffsetAndMetadata(1, '')} yield from coordinator.commit_offsets(offsets) with mock.patch('kafka.common.for_code') as mocked: mocked.return_value = Errors.GroupAuthorizationFailedError with self.assertRaises(Errors.GroupAuthorizationFailedError): yield from coordinator.commit_offsets(offsets) mocked.return_value = Errors.TopicAuthorizationFailedError with self.assertRaises(Errors.TopicAuthorizationFailedError): yield from coordinator.commit_offsets(offsets) mocked.return_value = Errors.InvalidCommitOffsetSizeError with self.assertRaises(Errors.InvalidCommitOffsetSizeError): yield from coordinator.commit_offsets(offsets) mocked.return_value = Errors.GroupLoadInProgressError with self.assertRaises(Errors.GroupLoadInProgressError): yield from coordinator.commit_offsets(offsets) mocked.return_value = Errors.RebalanceInProgressError with self.assertRaises(Errors.RebalanceInProgressError): yield from coordinator.commit_offsets(offsets) self.assertEqual(subscription.needs_partition_assignment, True) mocked.return_value = KafkaError with self.assertRaises(KafkaError): yield from coordinator.commit_offsets(offsets) mocked.return_value = Errors.NotCoordinatorForGroupError with self.assertRaises(Errors.NotCoordinatorForGroupError): yield from coordinator.commit_offsets(offsets) self.assertEqual(coordinator.coordinator_id, None) with self.assertRaises( Errors.GroupCoordinatorNotAvailableError): yield from coordinator.commit_offsets(offsets) yield from coordinator.close() yield from client.close()
def test_fetchoffsets_failed_scenarios(self): client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) yield from client.bootstrap() yield from self.wait_topic(client, 'topic1') subscription = SubscriptionState('earliest') subscription.subscribe(topics=('topic1', )) coordinator = GroupCoordinator(client, subscription, loop=self.loop, group_id='fetch-offsets-group') yield from coordinator.ensure_active_group() offsets = {TopicPartition('topic1', 0): OffsetAndMetadata(1, '')} with mock.patch('kafka.common.for_code') as mocked: mocked.side_effect = MockedKafkaErrCode( Errors.GroupLoadInProgressError, Errors.NoError) yield from coordinator.fetch_committed_offsets(offsets) mocked.side_effect = MockedKafkaErrCode( Errors.UnknownMemberIdError, Errors.NoError) with self.assertRaises(Errors.UnknownMemberIdError): yield from coordinator.fetch_committed_offsets(offsets) self.assertEqual(subscription.needs_partition_assignment, True) mocked.side_effect = None mocked.return_value = Errors.UnknownTopicOrPartitionError r = yield from coordinator.fetch_committed_offsets(offsets) self.assertEqual(r, {}) mocked.return_value = KafkaError with self.assertRaises(KafkaError): yield from coordinator.fetch_committed_offsets(offsets) mocked.side_effect = MockedKafkaErrCode( Errors.NotCoordinatorForGroupError, Errors.NoError, Errors.NoError, Errors.NoError) yield from coordinator.fetch_committed_offsets(offsets) yield from coordinator.close() yield from client.close()
def test_fetchoffsets_failed_scenarios(self): client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) yield from client.bootstrap() yield from self.wait_topic(client, 'topic1') subscription = SubscriptionState('earliest') subscription.subscribe(topics=('topic1',)) coordinator = GroupCoordinator( client, subscription, loop=self.loop, group_id='fetch-offsets-group') yield from coordinator.ensure_active_group() offsets = {TopicPartition('topic1', 0): OffsetAndMetadata(1, '')} with mock.patch('kafka.common.for_code') as mocked: mocked.side_effect = MockedKafkaErrCode( Errors.GroupLoadInProgressError, Errors.NoError) yield from coordinator.fetch_committed_offsets(offsets) mocked.side_effect = MockedKafkaErrCode( Errors.UnknownMemberIdError, Errors.NoError) with self.assertRaises(Errors.UnknownMemberIdError): yield from coordinator.fetch_committed_offsets(offsets) self.assertEqual(subscription.needs_partition_assignment, True) mocked.side_effect = None mocked.return_value = Errors.UnknownTopicOrPartitionError r = yield from coordinator.fetch_committed_offsets(offsets) self.assertEqual(r, {}) mocked.return_value = KafkaError with self.assertRaises(KafkaError): yield from coordinator.fetch_committed_offsets(offsets) mocked.side_effect = MockedKafkaErrCode( Errors.NotCoordinatorForGroupError, Errors.NoError, Errors.NoError, Errors.NoError) yield from coordinator.fetch_committed_offsets(offsets) yield from coordinator.close() yield from client.close()
def test_coordinator_metadata_change_by_broker(self): # Issue #108. We can have a misleading metadata change, that will # trigger additional rebalance client = AIOKafkaClient(loop=self.loop, bootstrap_servers=self.hosts) yield from client.bootstrap() yield from self.wait_topic(client, 'topic1') yield from self.wait_topic(client, 'topic2') client.set_topics(['other_topic']) yield from client.force_metadata_update() subscription = SubscriptionState('earliest') coordinator = GroupCoordinator( client, subscription, loop=self.loop, group_id='race-rebalance-subscribe-append', heartbeat_interval_ms=2000000) subscription.subscribe(topics=('topic1', )) yield from client.set_topics(subscription.group_subscription()) yield from coordinator.ensure_active_group() _perform_assignment = coordinator._perform_assignment with mock.patch.object(coordinator, '_perform_assignment') as mocked: mocked.side_effect = _perform_assignment subscription.subscribe(topics=('topic2', )) yield from client.set_topics(subscription.group_subscription()) # Should only trigger 1 rebalance, but will trigger 2 with bug: # Metadata snapshot will change: # {'topic1': {0, 1}} -> {'topic1': {0, 1}, 'topic2': {0, 1}} # And then again: # {'topic1': {0, 1}, 'topic2': {0, 1}} -> {'topic2': {0, 1}} yield from coordinator.ensure_active_group() yield from client.force_metadata_update() yield from coordinator.ensure_active_group() self.assertEqual(mocked.call_count, 1) yield from coordinator.close() yield from client.close()
class KafkaConsumer(six.Iterator): """Consume records from a Kafka cluster. The consumer will transparently handle the failure of servers in the Kafka cluster, and adapt as topic-partitions are created or migrate between brokers. It also interacts with the assigned kafka Group Coordinator node to allow multiple consumers to load balance consumption of topics (requires kafka >= 0.9.0.0). Arguments: *topics (str): optional list of topics to subscribe to. If not set, call subscribe() or assign() before consuming records. Keyword Arguments: bootstrap_servers: 'host[:port]' string (or list of 'host[:port]' strings) that the consumer should contact to bootstrap initial cluster metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to a Metadata API Request. Default port is 9092. If no servers are specified, will default to localhost:9092. client_id (str): a name for this client. This string is passed in each request to servers and can be used to identify specific server-side log entries that correspond to this client. Also submitted to GroupCoordinator for logging with respect to consumer group administration. Default: 'kafka-python-{version}' group_id (str or None): name of the consumer group to join for dynamic partition assignment (if enabled), and to use for fetching and committing offsets. If None, auto-partition assignment (via group coordinator) and offset commits are disabled. Default: 'kafka-python-default-group' key_deserializer (callable): Any callable that takes a raw message key and returns a deserialized key. value_deserializer (callable, optional): Any callable that takes a raw message value and returns a deserialized value. fetch_min_bytes (int): Minimum amount of data the server should return for a fetch request, otherwise wait up to fetch_max_wait_ms for more data to accumulate. Default: 1. fetch_max_wait_ms (int): The maximum amount of time in milliseconds the server will block before answering the fetch request if there isn't sufficient data to immediately satisfy the requirement given by fetch_min_bytes. Default: 500. max_partition_fetch_bytes (int): The maximum amount of data per-partition the server will return. The maximum total memory used for a request = #partitions * max_partition_fetch_bytes. This size must be at least as large as the maximum message size the server allows or else it is possible for the producer to send messages larger than the consumer can fetch. If that happens, the consumer can get stuck trying to fetch a large message on a certain partition. Default: 1048576. request_timeout_ms (int): Client request timeout in milliseconds. Default: 40000. retry_backoff_ms (int): Milliseconds to backoff when retrying on errors. Default: 100. reconnect_backoff_ms (int): The amount of time in milliseconds to wait before attempting to reconnect to a given host. Default: 50. max_in_flight_requests_per_connection (int): Requests are pipelined to kafka brokers up to this number of maximum requests per broker connection. Default: 5. auto_offset_reset (str): A policy for resetting offsets on OffsetOutOfRange errors: 'earliest' will move to the oldest available message, 'latest' will move to the most recent. Any ofther value will raise the exception. Default: 'latest'. enable_auto_commit (bool): If true the consumer's offset will be periodically committed in the background. Default: True. auto_commit_interval_ms (int): milliseconds between automatic offset commits, if enable_auto_commit is True. Default: 5000. default_offset_commit_callback (callable): called as callback(offsets, response) response will be either an Exception or a OffsetCommitResponse struct. This callback can be used to trigger custom actions when a commit request completes. check_crcs (bool): Automatically check the CRC32 of the records consumed. This ensures no on-the-wire or on-disk corruption to the messages occurred. This check adds some overhead, so it may be disabled in cases seeking extreme performance. Default: True metadata_max_age_ms (int): The period of time in milliseconds after which we force a refresh of metadata even if we haven't seen any partition leadership changes to proactively discover any new brokers or partitions. Default: 300000 partition_assignment_strategy (list): List of objects to use to distribute partition ownership amongst consumer instances when group management is used. Default: [RoundRobinPartitionAssignor] heartbeat_interval_ms (int): The expected time in milliseconds between heartbeats to the consumer coordinator when using Kafka's group management feature. Heartbeats are used to ensure that the consumer's session stays active and to facilitate rebalancing when new consumers join or leave the group. The value must be set lower than session_timeout_ms, but typically should be set no higher than 1/3 of that value. It can be adjusted even lower to control the expected time for normal rebalances. Default: 3000 session_timeout_ms (int): The timeout used to detect failures when using Kafka's group managementment facilities. Default: 30000 send_buffer_bytes (int): The size of the TCP send buffer (SO_SNDBUF) to use when sending data. Default: 131072 receive_buffer_bytes (int): The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. Default: 32768 consumer_timeout_ms (int): number of millisecond to throw a timeout exception to the consumer if no message is available for consumption. Default: -1 (dont throw exception) api_version (str): specify which kafka API version to use. 0.9 enables full group coordination features; 0.8.2 enables kafka-storage offset commits; 0.8.1 enables zookeeper-storage offset commits; 0.8.0 is what is left. If set to 'auto', will attempt to infer the broker version by probing various APIs. Default: auto Note: Configuration parameters are described in more detail at https://kafka.apache.org/090/configuration.html#newconsumerconfigs """ DEFAULT_CONFIG = { 'bootstrap_servers': 'localhost', 'client_id': 'kafka-python-' + __version__, 'group_id': 'kafka-python-default-group', 'key_deserializer': None, 'value_deserializer': None, 'fetch_max_wait_ms': 500, 'fetch_min_bytes': 1, 'max_partition_fetch_bytes': 1 * 1024 * 1024, 'request_timeout_ms': 40 * 1000, 'retry_backoff_ms': 100, 'reconnect_backoff_ms': 50, 'max_in_flight_requests_per_connection': 5, 'auto_offset_reset': 'latest', 'enable_auto_commit': True, 'auto_commit_interval_ms': 5000, 'check_crcs': True, 'metadata_max_age_ms': 5 * 60 * 1000, 'partition_assignment_strategy': (RoundRobinPartitionAssignor, ), 'heartbeat_interval_ms': 3000, 'session_timeout_ms': 30000, 'send_buffer_bytes': 128 * 1024, 'receive_buffer_bytes': 32 * 1024, 'consumer_timeout_ms': -1, 'api_version': 'auto', 'connections_max_idle_ms': 9 * 60 * 1000, # not implemented yet #'metric_reporters': None, #'metrics_num_samples': 2, #'metrics_sample_window_ms': 30000, } def __init__(self, *topics, **configs): self.config = copy.copy(self.DEFAULT_CONFIG) for key in self.config: if key in configs: self.config[key] = configs.pop(key) # Only check for extra config keys in top-level class assert not configs, 'Unrecognized configs: %s' % configs deprecated = {'smallest': 'earliest', 'largest': 'latest'} if self.config['auto_offset_reset'] in deprecated: new_config = deprecated[self.config['auto_offset_reset']] log.warning('use auto_offset_reset=%s (%s is deprecated)', new_config, self.config['auto_offset_reset']) self.config['auto_offset_reset'] = new_config self._client = KafkaClient(**self.config) # Check Broker Version if not set explicitly if self.config['api_version'] == 'auto': self.config['api_version'] = self._client.check_version() assert self.config['api_version'] in ( '0.9', '0.8.2', '0.8.1', '0.8.0'), 'Unrecognized api version' # Convert api_version config to tuple for easy comparisons self.config['api_version'] = tuple( map(int, self.config['api_version'].split('.'))) self._subscription = SubscriptionState( self.config['auto_offset_reset']) self._fetcher = Fetcher(self._client, self._subscription, **self.config) self._coordinator = ConsumerCoordinator( self._client, self._subscription, assignors=self.config['partition_assignment_strategy'], **self.config) self._closed = False self._iterator = None self._consumer_timeout = float('inf') #self.metrics = None if topics: self._subscription.subscribe(topics=topics) self._client.set_topics(topics) def assign(self, partitions): """Manually assign a list of TopicPartitions to this consumer. Arguments: partitions (list of TopicPartition): assignment for this instance. Raises: IllegalStateError: if consumer has already called subscribe() Warning: It is not possible to use both manual partition assignment with assign() and group assignment with subscribe(). Note: This interface does not support incremental assignment and will replace the previous assignment (if there was one). Note: Manual topic assignment through this method does not use the consumer's group management functionality. As such, there will be no rebalance operation triggered when group membership or cluster and topic metadata change. """ self._subscription.assign_from_user(partitions) self._client.set_topics([tp.topic for tp in partitions]) def assignment(self): """Get the TopicPartitions currently assigned to this consumer. If partitions were directly assigned using assign(), then this will simply return the same partitions that were previously assigned. If topics were subscribed using subscribe(), then this will give the set of topic partitions currently assigned to the consumer (which may be none if the assignment hasn't happened yet, or if the partitions are in the process of being reassigned). Returns: set: {TopicPartition, ...} """ return self._subscription.assigned_partitions() def close(self): """Close the consumer, waiting indefinitely for any needed cleanup.""" if self._closed: return log.debug("Closing the KafkaConsumer.") self._closed = True self._coordinator.close() #self.metrics.close() self._client.close() try: self.config['key_deserializer'].close() except AttributeError: pass try: self.config['value_deserializer'].close() except AttributeError: pass log.debug("The KafkaConsumer has closed.") def commit_async(self, offsets=None, callback=None): """Commit offsets to kafka asynchronously, optionally firing callback This commits offsets only to Kafka. The offsets committed using this API will be used on the first fetch after every rebalance and also on startup. As such, if you need to store offsets in anything other than Kafka, this API should not be used. This is an asynchronous call and will not block. Any errors encountered are either passed to the callback (if provided) or discarded. Arguments: offsets (dict, optional): {TopicPartition: OffsetAndMetadata} dict to commit with the configured group_id. Defaults to current consumed offsets for all subscribed partitions. callback (callable, optional): called as callback(offsets, response) with response as either an Exception or a OffsetCommitResponse struct. This callback can be used to trigger custom actions when a commit request completes. Returns: kafka.future.Future """ assert self.config['api_version'] >= (0, 8, 1), 'Requires >= Kafka 0.8.1' assert self.config['group_id'] is not None, 'Requires group_id' if offsets is None: offsets = self._subscription.all_consumed_offsets() log.debug("Committing offsets: %s", offsets) future = self._coordinator.commit_offsets_async(offsets, callback=callback) return future def commit(self, offsets=None): """Commit offsets to kafka, blocking until success or error This commits offsets only to Kafka. The offsets committed using this API will be used on the first fetch after every rebalance and also on startup. As such, if you need to store offsets in anything other than Kafka, this API should not be used. Blocks until either the commit succeeds or an unrecoverable error is encountered (in which case it is thrown to the caller). Currently only supports kafka-topic offset storage (not zookeeper) Arguments: offsets (dict, optional): {TopicPartition: OffsetAndMetadata} dict to commit with the configured group_id. Defaults to current consumed offsets for all subscribed partitions. """ assert self.config['api_version'] >= (0, 8, 1), 'Requires >= Kafka 0.8.1' assert self.config['group_id'] is not None, 'Requires group_id' if offsets is None: offsets = self._subscription.all_consumed_offsets() self._coordinator.commit_offsets_sync(offsets) def committed(self, partition): """Get the last committed offset for the given partition This offset will be used as the position for the consumer in the event of a failure. This call may block to do a remote call if the partition in question isn't assigned to this consumer or if the consumer hasn't yet initialized its cache of committed offsets. Arguments: partition (TopicPartition): the partition to check Returns: The last committed offset, or None if there was no prior commit. """ assert self.config['api_version'] >= (0, 8, 1), 'Requires >= Kafka 0.8.1' assert self.config['group_id'] is not None, 'Requires group_id' if self._subscription.is_assigned(partition): committed = self._subscription.assignment[partition].committed if committed is None: self._coordinator.refresh_committed_offsets_if_needed() committed = self._subscription.assignment[partition].committed else: commit_map = self._coordinator.fetch_committed_offsets([partition]) if partition in commit_map: committed = commit_map[partition].offset else: committed = None return committed def topics(self): """Get all topics the user is authorized to view. Returns: set: topics """ cluster = self._client.cluster if self._client._metadata_refresh_in_progress and self._client._topics: future = cluster.request_update() self._client.poll(future=future) stash = cluster.need_all_topic_metadata cluster.need_all_topic_metadata = True future = cluster.request_update() self._client.poll(future=future) cluster.need_all_topic_metadata = stash return cluster.topics() def partitions_for_topic(self, topic): """Get metadata about the partitions for a given topic. Arguments: topic (str): topic to check Returns: set: partition ids """ return self._client.cluster.partitions_for_topic(topic) def poll(self, timeout_ms=0): """Fetch data from assigned topics / partitions. Records are fetched and returned in batches by topic-partition. On each poll, consumer will try to use the last consumed offset as the starting offset and fetch sequentially. The last consumed offset can be manually set through seek(partition, offset) or automatically set as the last committed offset for the subscribed list of partitions. Incompatible with iterator interface -- use one or the other, not both. Arguments: timeout_ms (int, optional): milliseconds to spend waiting in poll if data is not available. If 0, returns immediately with any records that are available now. Must not be negative. Default: 0 Returns: dict: topic to list of records since the last fetch for the subscribed list of topics and partitions """ assert timeout_ms >= 0, 'Timeout must not be negative' assert self._iterator is None, 'Incompatible with iterator interface' # poll for new data until the timeout expires start = time.time() remaining = timeout_ms while True: records = self._poll_once(remaining) if records: # before returning the fetched records, we can send off the # next round of fetches and avoid block waiting for their # responses to enable pipelining while the user is handling the # fetched records. self._fetcher.init_fetches() return records elapsed_ms = (time.time() - start) * 1000 remaining = timeout_ms - elapsed_ms if remaining <= 0: return {} def _poll_once(self, timeout_ms): """ Do one round of polling. In addition to checking for new data, this does any needed heart-beating, auto-commits, and offset updates. Arguments: timeout_ms (int): The maximum time in milliseconds to block Returns: dict: map of topic to list of records (may be empty) """ if self.config['group_id'] is not None: if self.config['api_version'] >= (0, 8, 2): self._coordinator.ensure_coordinator_known() if self.config['api_version'] >= (0, 9): # ensure we have partitions assigned if we expect to if self._subscription.partitions_auto_assigned(): self._coordinator.ensure_active_group() # fetch positions if we have partitions we're subscribed to that we # don't know the offset for if not self._subscription.has_all_fetch_positions(): self._update_fetch_positions( self._subscription.missing_fetch_positions()) # init any new fetches (won't resend pending fetches) records = self._fetcher.fetched_records() # if data is available already, e.g. from a previous network client # poll() call to commit, then just return it immediately if records: return records self._fetcher.init_fetches() self._client.poll(timeout_ms) return self._fetcher.fetched_records() def position(self, partition): """Get the offset of the next record that will be fetched Arguments: partition (TopicPartition): partition to check Returns: int: offset """ assert self._subscription.is_assigned( partition), 'Partition is not assigned' offset = self._subscription.assignment[partition].position if offset is None: self._update_fetch_positions(partition) offset = self._subscription.assignment[partition].position return offset def highwater(self, partition): """Last known highwater offset for a partition A highwater offset is the offset that will be assigned to the next message that is produced. It may be useful for calculating lag, by comparing with the reported position. Note that both position and highwater refer to the *next* offset -- i.e., highwater offset is one greater than the newest availabel message. Highwater offsets are returned in FetchResponse messages, so will not be available if not FetchRequests have been sent for this partition yet. Arguments: partition (TopicPartition): partition to check Returns: int or None: offset if available """ assert self._subscription.is_assigned( partition), 'Partition is not assigned' return self._subscription.assignment[partition].highwater def pause(self, *partitions): """Suspend fetching from the requested partitions. Future calls to poll() will not return any records from these partitions until they have been resumed using resume(). Note that this method does not affect partition subscription. In particular, it does not cause a group rebalance when automatic assignment is used. Arguments: *partitions (TopicPartition): partitions to pause """ for partition in partitions: log.debug("Pausing partition %s", partition) self._subscription.pause(partition) def resume(self, *partitions): """Resume fetching from the specified (paused) partitions. Arguments: *partitions (TopicPartition): partitions to resume """ for partition in partitions: log.debug("Resuming partition %s", partition) self._subscription.resume(partition) def seek(self, partition, offset): """Manually specify the fetch offset for a TopicPartition. Overrides the fetch offsets that the consumer will use on the next poll(). If this API is invoked for the same partition more than once, the latest offset will be used on the next poll(). Note that you may lose data if this API is arbitrarily used in the middle of consumption, to reset the fetch offsets. Arguments: partition (TopicPartition): partition for seek operation offset (int): message offset in partition Raises: AssertionError: if offset is not an int >= 0; or if partition is not currently assigned. """ assert isinstance(offset, int) and offset >= 0, 'Offset must be >= 0' assert partition in self._subscription.assigned_partitions( ), 'Unassigned partition' log.debug("Seeking to offset %s for partition %s", offset, partition) self._subscription.assignment[partition].seek(offset) def seek_to_beginning(self, *partitions): """Seek to the oldest available offset for partitions. Arguments: *partitions: optionally provide specific TopicPartitions, otherwise default to all assigned partitions Raises: AssertionError: if any partition is not currently assigned, or if no partitions are assigned """ if not partitions: partitions = self._subscription.assigned_partitions() assert partitions, 'No partitions are currently assigned' else: for p in partitions: assert p in self._subscription.assigned_partitions( ), 'Unassigned partition' for tp in partitions: log.debug("Seeking to beginning of partition %s", tp) self._subscription.need_offset_reset(tp, OffsetResetStrategy.EARLIEST) def seek_to_end(self, *partitions): """Seek to the most recent available offset for partitions. Arguments: *partitions: optionally provide specific TopicPartitions, otherwise default to all assigned partitions Raises: AssertionError: if any partition is not currently assigned, or if no partitions are assigned """ if not partitions: partitions = self._subscription.assigned_partitions() assert partitions, 'No partitions are currently assigned' else: for p in partitions: assert p in self._subscription.assigned_partitions( ), 'Unassigned partition' for tp in partitions: log.debug("Seeking to end of partition %s", tp) self._subscription.need_offset_reset(tp, OffsetResetStrategy.LATEST) def subscribe(self, topics=(), pattern=None, listener=None): """Subscribe to a list of topics, or a topic regex pattern Partitions will be dynamically assigned via a group coordinator. Topic subscriptions are not incremental: this list will replace the current assignment (if there is one). This method is incompatible with assign() Arguments: topics (list): List of topics for subscription. pattern (str): Pattern to match available topics. You must provide either topics or pattern, but not both. listener (ConsumerRebalanceListener): Optionally include listener callback, which will be called before and after each rebalance operation. As part of group management, the consumer will keep track of the list of consumers that belong to a particular group and will trigger a rebalance operation if one of the following events trigger: * Number of partitions change for any of the subscribed topics * Topic is created or deleted * An existing member of the consumer group dies * A new member is added to the consumer group When any of these events are triggered, the provided listener will be invoked first to indicate that the consumer's assignment has been revoked, and then again when the new assignment has been received. Note that this listener will immediately override any listener set in a previous call to subscribe. It is guaranteed, however, that the partitions revoked/assigned through this interface are from topics subscribed in this call. Raises: IllegalStateError: if called after previously calling assign() AssertionError: if neither topics or pattern is provided TypeError: if listener is not a ConsumerRebalanceListener """ # SubscriptionState handles error checking self._subscription.subscribe(topics=topics, pattern=pattern, listener=listener) # regex will need all topic metadata if pattern is not None: self._client.cluster.need_all_topic_metadata = True self._client.set_topics([]) log.debug("Subscribed to topic pattern: %s", pattern) else: self._client.cluster.need_all_topic_metadata = False self._client.set_topics(self._subscription.group_subscription()) log.debug("Subscribed to topic(s): %s", topics) def subscription(self): """Get the current topic subscription. Returns: set: {topic, ...} """ return self._subscription.subscription def unsubscribe(self): """Unsubscribe from all topics and clear all assigned partitions.""" self._subscription.unsubscribe() self._coordinator.close() self._client.cluster.need_all_topic_metadata = False self._client.set_topics([]) log.debug( "Unsubscribed all topics or patterns and assigned partitions") def _update_fetch_positions(self, partitions): """ Set the fetch position to the committed position (if there is one) or reset it using the offset reset policy the user has configured. Arguments: partitions (List[TopicPartition]): The partitions that need updating fetch positions Raises: NoOffsetForPartitionError: If no offset is stored for a given partition and no offset reset policy is defined """ if (self.config['api_version'] >= (0, 8, 1) and self.config['group_id'] is not None): # refresh commits for all assigned partitions self._coordinator.refresh_committed_offsets_if_needed() # then do any offset lookups in case some positions are not known self._fetcher.update_fetch_positions(partitions) def _message_generator(self): assert self.assignment() or self.subscription( ) is not None, 'No topic subscription or manual partition assignment' while time.time() < self._consumer_timeout: if self.config['group_id'] is not None: if self.config['api_version'] >= (0, 8, 2): self._coordinator.ensure_coordinator_known() if self.config['api_version'] >= (0, 9): # ensure we have partitions assigned if we expect to if self._subscription.partitions_auto_assigned(): self._coordinator.ensure_active_group() # fetch positions if we have partitions we're subscribed to that we # don't know the offset for if not self._subscription.has_all_fetch_positions(): partitions = self._subscription.missing_fetch_positions() self._update_fetch_positions(partitions) poll_ms = 1000 * (self._consumer_timeout - time.time()) if not self._fetcher.in_flight_fetches(): poll_ms = 0 self._client.poll(poll_ms) # We need to make sure we at least keep up with scheduled tasks, # like heartbeats, auto-commits, and metadata refreshes timeout_at = self._next_timeout() if self.config['api_version'] >= (0, 9): if self.config['group_id'] is not None and not self.assignment( ): sleep_time = max(timeout_at - time.time(), 0) if sleep_time > 0 and not self._client.in_flight_request_count( ): log.debug('No partitions assigned; sleeping for %s', sleep_time) time.sleep(sleep_time) continue if time.time() > timeout_at: continue for msg in self._fetcher: yield msg if time.time() > timeout_at: log.debug("internal iterator timeout - breaking for poll") break # an else block on a for loop only executes if there was no break # so this should only be called on a StopIteration from the fetcher # and we assume that it is safe to init_fetches when fetcher is done # i.e., there are no more records stored internally else: self._fetcher.init_fetches() def _next_timeout(self): return min(self._consumer_timeout, self._client._delayed_tasks.next_at() + time.time(), self._client.cluster.ttl() / 1000.0 + time.time()) def __iter__(self): # pylint: disable=non-iterator-returned return self def __next__(self): if not self._iterator: self._iterator = self._message_generator() self._set_consumer_timeout() try: return next(self._iterator) except StopIteration: self._iterator = None raise def _set_consumer_timeout(self): # consumer_timeout_ms can be used to stop iteration early if self.config['consumer_timeout_ms'] >= 0: self._consumer_timeout = time.time() + ( self.config['consumer_timeout_ms'] / 1000.0) # old KafkaConsumer methods are deprecated def configure(self, **configs): raise NotImplementedError('deprecated -- initialize a new consumer') def set_topic_partitions(self, *topics): raise NotImplementedError('deprecated -- use subscribe() or assign()') def fetch_messages(self): raise NotImplementedError( 'deprecated -- use poll() or iterator interface') def get_partition_offsets(self, topic, partition, request_time_ms, max_num_offsets): raise NotImplementedError( 'deprecated -- send an OffsetRequest with KafkaClient') def offsets(self, group=None): raise NotImplementedError('deprecated -- use committed(partition)') def task_done(self, message): raise NotImplementedError( 'deprecated -- commit offsets manually if needed')
class KafkaConsumer(six.Iterator): """Consume records from a Kafka cluster. The consumer will transparently handle the failure of servers in the Kafka cluster, and adapt as topic-partitions are created or migrate between brokers. It also interacts with the assigned kafka Group Coordinator node to allow multiple consumers to load balance consumption of topics (requires kafka >= 0.9.0.0). Arguments: *topics (str): optional list of topics to subscribe to. If not set, call subscribe() or assign() before consuming records. Keyword Arguments: bootstrap_servers: 'host[:port]' string (or list of 'host[:port]' strings) that the consumer should contact to bootstrap initial cluster metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to a Metadata API Request. Default port is 9092. If no servers are specified, will default to localhost:9092. client_id (str): a name for this client. This string is passed in each request to servers and can be used to identify specific server-side log entries that correspond to this client. Also submitted to GroupCoordinator for logging with respect to consumer group administration. Default: 'kafka-python-{version}' group_id (str or None): name of the consumer group to join for dynamic partition assignment (if enabled), and to use for fetching and committing offsets. If None, auto-partition assignment (via group coordinator) and offset commits are disabled. Default: 'kafka-python-default-group' key_deserializer (callable): Any callable that takes a raw message key and returns a deserialized key. value_deserializer (callable): Any callable that takes a raw message value and returns a deserialized value. fetch_min_bytes (int): Minimum amount of data the server should return for a fetch request, otherwise wait up to fetch_max_wait_ms for more data to accumulate. Default: 1. fetch_max_wait_ms (int): The maximum amount of time in milliseconds the server will block before answering the fetch request if there isn't sufficient data to immediately satisfy the requirement given by fetch_min_bytes. Default: 500. max_partition_fetch_bytes (int): The maximum amount of data per-partition the server will return. The maximum total memory used for a request = #partitions * max_partition_fetch_bytes. This size must be at least as large as the maximum message size the server allows or else it is possible for the producer to send messages larger than the consumer can fetch. If that happens, the consumer can get stuck trying to fetch a large message on a certain partition. Default: 1048576. request_timeout_ms (int): Client request timeout in milliseconds. Default: 40000. retry_backoff_ms (int): Milliseconds to backoff when retrying on errors. Default: 100. reconnect_backoff_ms (int): The amount of time in milliseconds to wait before attempting to reconnect to a given host. Default: 50. max_in_flight_requests_per_connection (int): Requests are pipelined to kafka brokers up to this number of maximum requests per broker connection. Default: 5. auto_offset_reset (str): A policy for resetting offsets on OffsetOutOfRange errors: 'earliest' will move to the oldest available message, 'latest' will move to the most recent. Any other value will raise the exception. Default: 'latest'. enable_auto_commit (bool): If true the consumer's offset will be periodically committed in the background. Default: True. auto_commit_interval_ms (int): milliseconds between automatic offset commits, if enable_auto_commit is True. Default: 5000. default_offset_commit_callback (callable): called as callback(offsets, response) response will be either an Exception or a OffsetCommitResponse struct. This callback can be used to trigger custom actions when a commit request completes. check_crcs (bool): Automatically check the CRC32 of the records consumed. This ensures no on-the-wire or on-disk corruption to the messages occurred. This check adds some overhead, so it may be disabled in cases seeking extreme performance. Default: True metadata_max_age_ms (int): The period of time in milliseconds after which we force a refresh of metadata even if we haven't seen any partition leadership changes to proactively discover any new brokers or partitions. Default: 300000 partition_assignment_strategy (list): List of objects to use to distribute partition ownership amongst consumer instances when group management is used. Default: [RangePartitionAssignor, RoundRobinPartitionAssignor] heartbeat_interval_ms (int): The expected time in milliseconds between heartbeats to the consumer coordinator when using Kafka's group management feature. Heartbeats are used to ensure that the consumer's session stays active and to facilitate rebalancing when new consumers join or leave the group. The value must be set lower than session_timeout_ms, but typically should be set no higher than 1/3 of that value. It can be adjusted even lower to control the expected time for normal rebalances. Default: 3000 session_timeout_ms (int): The timeout used to detect failures when using Kafka's group managementment facilities. Default: 30000 max_poll_records (int): The maximum number of records returned in a single call to poll(). receive_buffer_bytes (int): The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. Default: None (relies on system defaults). The java client defaults to 32768. send_buffer_bytes (int): The size of the TCP send buffer (SO_SNDBUF) to use when sending data. Default: None (relies on system defaults). The java client defaults to 131072. socket_options (list): List of tuple-arguments to socket.setsockopt to apply to broker connection sockets. Default: [(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)] consumer_timeout_ms (int): number of milliseconds to block during message iteration before raising StopIteration (i.e., ending the iterator). Default block forever [float('inf')]. skip_double_compressed_messages (bool): A bug in KafkaProducer <= 1.2.4 caused some messages to be corrupted via double-compression. By default, the fetcher will return these messages as a compressed blob of bytes with a single offset, i.e. how the message was actually published to the cluster. If you prefer to have the fetcher automatically detect corrupt messages and skip them, set this option to True. Default: False. security_protocol (str): Protocol used to communicate with brokers. Valid values are: PLAINTEXT, SSL. Default: PLAINTEXT. ssl_context (ssl.SSLContext): pre-configured SSLContext for wrapping socket connections. If provided, all other ssl_* configurations will be ignored. Default: None. ssl_check_hostname (bool): flag to configure whether ssl handshake should verify that the certificate matches the brokers hostname. default: true. ssl_cafile (str): optional filename of ca file to use in certificate verification. default: none. ssl_certfile (str): optional filename of file in pem format containing the client certificate, as well as any ca certificates needed to establish the certificate's authenticity. default: none. ssl_keyfile (str): optional filename containing the client private key. default: none. ssl_password (str): optional password to be used when loading the certificate chain. default: None. ssl_crlfile (str): optional filename containing the CRL to check for certificate expiration. By default, no CRL check is done. When providing a file, only the leaf certificate will be checked against this CRL. The CRL can only be checked with Python 3.4+ or 2.7.9+. default: none. api_version (tuple): specify which kafka API version to use. If set to None, the client will attempt to infer the broker version by probing various APIs. Default: None Examples: (0, 9) enables full group coordination features with automatic partition assignment and rebalancing, (0, 8, 2) enables kafka-storage offset commits with manual partition assignment only, (0, 8, 1) enables zookeeper-storage offset commits with manual partition assignment only, (0, 8, 0) enables basic functionality but requires manual partition assignment and offset management. For a full list of supported versions, see KafkaClient.API_VERSIONS api_version_auto_timeout_ms (int): number of milliseconds to throw a timeout exception from the constructor when checking the broker api version. Only applies if api_version set to 'auto' metric_reporters (list): A list of classes to use as metrics reporters. Implementing the AbstractMetricsReporter interface allows plugging in classes that will be notified of new metric creation. Default: [] metrics_num_samples (int): The number of samples maintained to compute metrics. Default: 2 metrics_sample_window_ms (int): The maximum age in milliseconds of samples used to compute metrics. Default: 30000 selector (selectors.BaseSelector): Provide a specific selector implementation to use for I/O multiplexing. Default: selectors.DefaultSelector exclude_internal_topics (bool): Whether records from internal topics (such as offsets) should be exposed to the consumer. If set to True the only way to receive records from an internal topic is subscribing to it. Requires 0.10+ Default: True sasl_mechanism (str): string picking sasl mechanism when security_protocol is SASL_PLAINTEXT or SASL_SSL. Currently only PLAIN is supported. Default: None sasl_plain_username (str): username for sasl PLAIN authentication. Default: None sasl_plain_password (str): password for sasl PLAIN authentication. Default: None Note: Configuration parameters are described in more detail at https://kafka.apache.org/0100/configuration.html#newconsumerconfigs """ DEFAULT_CONFIG = { 'bootstrap_servers': 'localhost', 'client_id': 'kafka-python-' + __version__, 'group_id': 'kafka-python-default-group', 'key_deserializer': None, 'value_deserializer': None, 'fetch_max_wait_ms': 500, 'fetch_min_bytes': 1, 'max_partition_fetch_bytes': 1 * 1024 * 1024, 'request_timeout_ms': 40 * 1000, 'retry_backoff_ms': 100, 'reconnect_backoff_ms': 50, 'max_in_flight_requests_per_connection': 5, 'auto_offset_reset': 'latest', 'enable_auto_commit': True, 'auto_commit_interval_ms': 5000, 'default_offset_commit_callback': lambda offsets, response: True, 'check_crcs': True, 'metadata_max_age_ms': 5 * 60 * 1000, 'partition_assignment_strategy': (RangePartitionAssignor, RoundRobinPartitionAssignor), 'heartbeat_interval_ms': 3000, 'session_timeout_ms': 30000, 'max_poll_records': sys.maxsize, 'receive_buffer_bytes': None, 'send_buffer_bytes': None, 'socket_options': [(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)], 'consumer_timeout_ms': float('inf'), 'skip_double_compressed_messages': False, 'security_protocol': 'PLAINTEXT', 'ssl_context': None, 'ssl_check_hostname': True, 'ssl_cafile': None, 'ssl_certfile': None, 'ssl_keyfile': None, 'ssl_crlfile': None, 'ssl_password': None, 'api_version': None, 'api_version_auto_timeout_ms': 2000, 'connections_max_idle_ms': 9 * 60 * 1000, # not implemented yet 'metric_reporters': [], 'metrics_num_samples': 2, 'metrics_sample_window_ms': 30000, 'metric_group_prefix': 'consumer', 'selector': selectors.DefaultSelector, 'exclude_internal_topics': True, 'sasl_mechanism': None, 'sasl_plain_username': None, 'sasl_plain_password': None, } def __init__(self, *topics, **configs): self.config = copy.copy(self.DEFAULT_CONFIG) for key in self.config: if key in configs: self.config[key] = configs.pop(key) # Only check for extra config keys in top-level class assert not configs, 'Unrecognized configs: %s' % configs deprecated = {'smallest': 'earliest', 'largest': 'latest'} if self.config['auto_offset_reset'] in deprecated: new_config = deprecated[self.config['auto_offset_reset']] log.warning('use auto_offset_reset=%s (%s is deprecated)', new_config, self.config['auto_offset_reset']) self.config['auto_offset_reset'] = new_config metrics_tags = {'client-id': self.config['client_id']} metric_config = MetricConfig(samples=self.config['metrics_num_samples'], time_window_ms=self.config['metrics_sample_window_ms'], tags=metrics_tags) reporters = [reporter() for reporter in self.config['metric_reporters']] self._metrics = Metrics(metric_config, reporters) # TODO _metrics likely needs to be passed to KafkaClient, etc. # api_version was previously a str. accept old format for now if isinstance(self.config['api_version'], str): str_version = self.config['api_version'] if str_version == 'auto': self.config['api_version'] = None else: self.config['api_version'] = tuple(map(int, str_version.split('.'))) log.warning('use api_version=%s [tuple] -- "%s" as str is deprecated', str(self.config['api_version']), str_version) self._client = KafkaClient(metrics=self._metrics, **self.config) # Get auto-discovered version from client if necessary if self.config['api_version'] is None: self.config['api_version'] = self._client.config['api_version'] self._subscription = SubscriptionState(self.config['auto_offset_reset']) self._fetcher = Fetcher( self._client, self._subscription, self._metrics, **self.config) self._coordinator = ConsumerCoordinator( self._client, self._subscription, self._metrics, assignors=self.config['partition_assignment_strategy'], **self.config) self._closed = False self._iterator = None self._consumer_timeout = float('inf') if topics: self._subscription.subscribe(topics=topics) self._client.set_topics(topics) def assign(self, partitions): """Manually assign a list of TopicPartitions to this consumer. Arguments: partitions (list of TopicPartition): assignment for this instance. Raises: IllegalStateError: if consumer has already called subscribe() Warning: It is not possible to use both manual partition assignment with assign() and group assignment with subscribe(). Note: This interface does not support incremental assignment and will replace the previous assignment (if there was one). Note: Manual topic assignment through this method does not use the consumer's group management functionality. As such, there will be no rebalance operation triggered when group membership or cluster and topic metadata change. """ self._subscription.assign_from_user(partitions) self._client.set_topics([tp.topic for tp in partitions]) def assignment(self): """Get the TopicPartitions currently assigned to this consumer. If partitions were directly assigned using assign(), then this will simply return the same partitions that were previously assigned. If topics were subscribed using subscribe(), then this will give the set of topic partitions currently assigned to the consumer (which may be none if the assignment hasn't happened yet, or if the partitions are in the process of being reassigned). Returns: set: {TopicPartition, ...} """ return self._subscription.assigned_partitions() def close(self): """Close the consumer, waiting indefinitely for any needed cleanup.""" if self._closed: return log.debug("Closing the KafkaConsumer.") self._closed = True self._coordinator.close() self._metrics.close() self._client.close() try: self.config['key_deserializer'].close() except AttributeError: pass try: self.config['value_deserializer'].close() except AttributeError: pass log.debug("The KafkaConsumer has closed.") def commit_async(self, offsets=None, callback=None): """Commit offsets to kafka asynchronously, optionally firing callback This commits offsets only to Kafka. The offsets committed using this API will be used on the first fetch after every rebalance and also on startup. As such, if you need to store offsets in anything other than Kafka, this API should not be used. To avoid re-processing the last message read if a consumer is restarted, the committed offset should be the next message your application should consume, i.e.: last_offset + 1. This is an asynchronous call and will not block. Any errors encountered are either passed to the callback (if provided) or discarded. Arguments: offsets (dict, optional): {TopicPartition: OffsetAndMetadata} dict to commit with the configured group_id. Defaults to current consumed offsets for all subscribed partitions. callback (callable, optional): called as callback(offsets, response) with response as either an Exception or a OffsetCommitResponse struct. This callback can be used to trigger custom actions when a commit request completes. Returns: kafka.future.Future """ assert self.config['api_version'] >= (0, 8, 1), 'Requires >= Kafka 0.8.1' assert self.config['group_id'] is not None, 'Requires group_id' if offsets is None: offsets = self._subscription.all_consumed_offsets() log.debug("Committing offsets: %s", offsets) future = self._coordinator.commit_offsets_async( offsets, callback=callback) return future def commit(self, offsets=None): """Commit offsets to kafka, blocking until success or error This commits offsets only to Kafka. The offsets committed using this API will be used on the first fetch after every rebalance and also on startup. As such, if you need to store offsets in anything other than Kafka, this API should not be used. To avoid re-processing the last message read if a consumer is restarted, the committed offset should be the next message your application should consume, i.e.: last_offset + 1. Blocks until either the commit succeeds or an unrecoverable error is encountered (in which case it is thrown to the caller). Currently only supports kafka-topic offset storage (not zookeeper) Arguments: offsets (dict, optional): {TopicPartition: OffsetAndMetadata} dict to commit with the configured group_id. Defaults to current consumed offsets for all subscribed partitions. """ assert self.config['api_version'] >= (0, 8, 1), 'Requires >= Kafka 0.8.1' assert self.config['group_id'] is not None, 'Requires group_id' if offsets is None: offsets = self._subscription.all_consumed_offsets() self._coordinator.commit_offsets_sync(offsets) def committed(self, partition): """Get the last committed offset for the given partition This offset will be used as the position for the consumer in the event of a failure. This call may block to do a remote call if the partition in question isn't assigned to this consumer or if the consumer hasn't yet initialized its cache of committed offsets. Arguments: partition (TopicPartition): the partition to check Returns: The last committed offset, or None if there was no prior commit. """ assert self.config['api_version'] >= (0, 8, 1), 'Requires >= Kafka 0.8.1' assert self.config['group_id'] is not None, 'Requires group_id' if not isinstance(partition, TopicPartition): raise TypeError('partition must be a TopicPartition namedtuple') if self._subscription.is_assigned(partition): committed = self._subscription.assignment[partition].committed if committed is None: self._coordinator.refresh_committed_offsets_if_needed() committed = self._subscription.assignment[partition].committed else: commit_map = self._coordinator.fetch_committed_offsets([partition]) if partition in commit_map: committed = commit_map[partition].offset else: committed = None return committed def topics(self): """Get all topics the user is authorized to view. Returns: set: topics """ cluster = self._client.cluster if self._client._metadata_refresh_in_progress and self._client._topics: future = cluster.request_update() self._client.poll(future=future) stash = cluster.need_all_topic_metadata cluster.need_all_topic_metadata = True future = cluster.request_update() self._client.poll(future=future) cluster.need_all_topic_metadata = stash return cluster.topics() def partitions_for_topic(self, topic): """Get metadata about the partitions for a given topic. Arguments: topic (str): topic to check Returns: set: partition ids """ return self._client.cluster.partitions_for_topic(topic) def poll(self, timeout_ms=0, max_records=None): """Fetch data from assigned topics / partitions. Records are fetched and returned in batches by topic-partition. On each poll, consumer will try to use the last consumed offset as the starting offset and fetch sequentially. The last consumed offset can be manually set through seek(partition, offset) or automatically set as the last committed offset for the subscribed list of partitions. Incompatible with iterator interface -- use one or the other, not both. Arguments: timeout_ms (int, optional): milliseconds spent waiting in poll if data is not available in the buffer. If 0, returns immediately with any records that are available currently in the buffer, else returns empty. Must not be negative. Default: 0 max_records (int, optional): The maximum number of records returned in a single call to :meth:`poll`. Default: Inherit value from max_poll_records. Returns: dict: topic to list of records since the last fetch for the subscribed list of topics and partitions """ assert timeout_ms >= 0, 'Timeout must not be negative' if max_records is None: max_records = self.config['max_poll_records'] # poll for new data until the timeout expires start = time.time() remaining = timeout_ms while True: records = self._poll_once(remaining, max_records) if records: return records elapsed_ms = (time.time() - start) * 1000 remaining = timeout_ms - elapsed_ms if remaining <= 0: return {} def _poll_once(self, timeout_ms, max_records): """ Do one round of polling. In addition to checking for new data, this does any needed heart-beating, auto-commits, and offset updates. Arguments: timeout_ms (int): The maximum time in milliseconds to block Returns: dict: map of topic to list of records (may be empty) """ if self._use_consumer_group(): self._coordinator.ensure_coordinator_known() self._coordinator.ensure_active_group() # 0.8.2 brokers support kafka-backed offset storage via group coordinator elif self.config['group_id'] is not None and self.config['api_version'] >= (0, 8, 2): self._coordinator.ensure_coordinator_known() # fetch positions if we have partitions we're subscribed to that we # don't know the offset for if not self._subscription.has_all_fetch_positions(): self._update_fetch_positions(self._subscription.missing_fetch_positions()) # if data is available already, e.g. from a previous network client # poll() call to commit, then just return it immediately records, partial = self._fetcher.fetched_records(max_records) if records: # before returning the fetched records, we can send off the # next round of fetches and avoid block waiting for their # responses to enable pipelining while the user is handling the # fetched records. if not partial: self._fetcher.send_fetches() return records # send any new fetches (won't resend pending fetches) self._fetcher.send_fetches() self._client.poll(timeout_ms=timeout_ms, sleep=True) records, _ = self._fetcher.fetched_records(max_records) return records def position(self, partition): """Get the offset of the next record that will be fetched Arguments: partition (TopicPartition): partition to check Returns: int: offset """ if not isinstance(partition, TopicPartition): raise TypeError('partition must be a TopicPartition namedtuple') assert self._subscription.is_assigned(partition), 'Partition is not assigned' offset = self._subscription.assignment[partition].position if offset is None: self._update_fetch_positions([partition]) offset = self._subscription.assignment[partition].position return offset def highwater(self, partition): """Last known highwater offset for a partition A highwater offset is the offset that will be assigned to the next message that is produced. It may be useful for calculating lag, by comparing with the reported position. Note that both position and highwater refer to the *next* offset -- i.e., highwater offset is one greater than the newest available message. Highwater offsets are returned in FetchResponse messages, so will not be available if no FetchRequests have been sent for this partition yet. Arguments: partition (TopicPartition): partition to check Returns: int or None: offset if available """ if not isinstance(partition, TopicPartition): raise TypeError('partition must be a TopicPartition namedtuple') assert self._subscription.is_assigned(partition), 'Partition is not assigned' return self._subscription.assignment[partition].highwater def pause(self, *partitions): """Suspend fetching from the requested partitions. Future calls to poll() will not return any records from these partitions until they have been resumed using resume(). Note that this method does not affect partition subscription. In particular, it does not cause a group rebalance when automatic assignment is used. Arguments: *partitions (TopicPartition): partitions to pause """ if not all([isinstance(p, TopicPartition) for p in partitions]): raise TypeError('partitions must be TopicPartition namedtuples') for partition in partitions: log.debug("Pausing partition %s", partition) self._subscription.pause(partition) def paused(self): """Get the partitions that were previously paused by a call to pause(). Returns: set: {partition (TopicPartition), ...} """ return self._subscription.paused_partitions() def resume(self, *partitions): """Resume fetching from the specified (paused) partitions. Arguments: *partitions (TopicPartition): partitions to resume """ if not all([isinstance(p, TopicPartition) for p in partitions]): raise TypeError('partitions must be TopicPartition namedtuples') for partition in partitions: log.debug("Resuming partition %s", partition) self._subscription.resume(partition) def seek(self, partition, offset): """Manually specify the fetch offset for a TopicPartition. Overrides the fetch offsets that the consumer will use on the next poll(). If this API is invoked for the same partition more than once, the latest offset will be used on the next poll(). Note that you may lose data if this API is arbitrarily used in the middle of consumption, to reset the fetch offsets. Arguments: partition (TopicPartition): partition for seek operation offset (int): message offset in partition Raises: AssertionError: if offset is not an int >= 0; or if partition is not currently assigned. """ if not isinstance(partition, TopicPartition): raise TypeError('partition must be a TopicPartition namedtuple') assert isinstance(offset, int) and offset >= 0, 'Offset must be >= 0' assert partition in self._subscription.assigned_partitions(), 'Unassigned partition' log.debug("Seeking to offset %s for partition %s", offset, partition) self._subscription.assignment[partition].seek(offset) def seek_to_beginning(self, *partitions): """Seek to the oldest available offset for partitions. Arguments: *partitions: optionally provide specific TopicPartitions, otherwise default to all assigned partitions Raises: AssertionError: if any partition is not currently assigned, or if no partitions are assigned """ if not all([isinstance(p, TopicPartition) for p in partitions]): raise TypeError('partitions must be TopicPartition namedtuples') if not partitions: partitions = self._subscription.assigned_partitions() assert partitions, 'No partitions are currently assigned' else: for p in partitions: assert p in self._subscription.assigned_partitions(), 'Unassigned partition' for tp in partitions: log.debug("Seeking to beginning of partition %s", tp) self._subscription.need_offset_reset(tp, OffsetResetStrategy.EARLIEST) def seek_to_end(self, *partitions): """Seek to the most recent available offset for partitions. Arguments: *partitions: optionally provide specific TopicPartitions, otherwise default to all assigned partitions Raises: AssertionError: if any partition is not currently assigned, or if no partitions are assigned """ if not all([isinstance(p, TopicPartition) for p in partitions]): raise TypeError('partitions must be TopicPartition namedtuples') if not partitions: partitions = self._subscription.assigned_partitions() assert partitions, 'No partitions are currently assigned' else: for p in partitions: assert p in self._subscription.assigned_partitions(), 'Unassigned partition' for tp in partitions: log.debug("Seeking to end of partition %s", tp) self._subscription.need_offset_reset(tp, OffsetResetStrategy.LATEST) def subscribe(self, topics=(), pattern=None, listener=None): """Subscribe to a list of topics, or a topic regex pattern Partitions will be dynamically assigned via a group coordinator. Topic subscriptions are not incremental: this list will replace the current assignment (if there is one). This method is incompatible with assign() Arguments: topics (list): List of topics for subscription. pattern (str): Pattern to match available topics. You must provide either topics or pattern, but not both. listener (ConsumerRebalanceListener): Optionally include listener callback, which will be called before and after each rebalance operation. As part of group management, the consumer will keep track of the list of consumers that belong to a particular group and will trigger a rebalance operation if one of the following events trigger: * Number of partitions change for any of the subscribed topics * Topic is created or deleted * An existing member of the consumer group dies * A new member is added to the consumer group When any of these events are triggered, the provided listener will be invoked first to indicate that the consumer's assignment has been revoked, and then again when the new assignment has been received. Note that this listener will immediately override any listener set in a previous call to subscribe. It is guaranteed, however, that the partitions revoked/assigned through this interface are from topics subscribed in this call. Raises: IllegalStateError: if called after previously calling assign() AssertionError: if neither topics or pattern is provided TypeError: if listener is not a ConsumerRebalanceListener """ # SubscriptionState handles error checking self._subscription.subscribe(topics=topics, pattern=pattern, listener=listener) # regex will need all topic metadata if pattern is not None: self._client.cluster.need_all_topic_metadata = True self._client.set_topics([]) log.debug("Subscribed to topic pattern: %s", pattern) else: self._client.cluster.need_all_topic_metadata = False self._client.set_topics(self._subscription.group_subscription()) log.debug("Subscribed to topic(s): %s", topics) def subscription(self): """Get the current topic subscription. Returns: set: {topic, ...} """ return self._subscription.subscription def unsubscribe(self): """Unsubscribe from all topics and clear all assigned partitions.""" self._subscription.unsubscribe() self._coordinator.close() self._client.cluster.need_all_topic_metadata = False self._client.set_topics([]) log.debug("Unsubscribed all topics or patterns and assigned partitions") def metrics(self, raw=False): """Warning: this is an unstable interface. It may change in future releases without warning""" if raw: return self._metrics.metrics metrics = {} for k, v in self._metrics.metrics.items(): if k.group not in metrics: metrics[k.group] = {} if k.name not in metrics[k.group]: metrics[k.group][k.name] = {} metrics[k.group][k.name] = v.value() return metrics def _use_consumer_group(self): """Return True iff this consumer can/should join a broker-coordinated group.""" if self.config['api_version'] < (0, 9): return False elif self.config['group_id'] is None: return False elif not self._subscription.partitions_auto_assigned(): return False return True def _update_fetch_positions(self, partitions): """ Set the fetch position to the committed position (if there is one) or reset it using the offset reset policy the user has configured. Arguments: partitions (List[TopicPartition]): The partitions that need updating fetch positions Raises: NoOffsetForPartitionError: If no offset is stored for a given partition and no offset reset policy is defined """ if (self.config['api_version'] >= (0, 8, 1) and self.config['group_id'] is not None): # refresh commits for all assigned partitions self._coordinator.refresh_committed_offsets_if_needed() # then do any offset lookups in case some positions are not known self._fetcher.update_fetch_positions(partitions) def _message_generator(self): assert self.assignment() or self.subscription() is not None, 'No topic subscription or manual partition assignment' while time.time() < self._consumer_timeout: if self._use_consumer_group(): self._coordinator.ensure_coordinator_known() self._coordinator.ensure_active_group() # 0.8.2 brokers support kafka-backed offset storage via group coordinator elif self.config['group_id'] is not None and self.config['api_version'] >= (0, 8, 2): self._coordinator.ensure_coordinator_known() # fetch offsets for any subscribed partitions that we arent tracking yet if not self._subscription.has_all_fetch_positions(): partitions = self._subscription.missing_fetch_positions() self._update_fetch_positions(partitions) poll_ms = 1000 * (self._consumer_timeout - time.time()) if not self._fetcher.in_flight_fetches(): poll_ms = 0 self._client.poll(timeout_ms=poll_ms, sleep=True) # We need to make sure we at least keep up with scheduled tasks, # like heartbeats, auto-commits, and metadata refreshes timeout_at = self._next_timeout() # Because the consumer client poll does not sleep unless blocking on # network IO, we need to explicitly sleep when we know we are idle # because we haven't been assigned any partitions to fetch / consume if self._use_consumer_group() and not self.assignment(): sleep_time = max(timeout_at - time.time(), 0) if sleep_time > 0 and not self._client.in_flight_request_count(): log.debug('No partitions assigned; sleeping for %s', sleep_time) time.sleep(sleep_time) continue # Short-circuit the fetch iterator if we are already timed out # to avoid any unintentional interaction with fetcher setup if time.time() > timeout_at: continue for msg in self._fetcher: yield msg if time.time() > timeout_at: log.debug("internal iterator timeout - breaking for poll") break # an else block on a for loop only executes if there was no break # so this should only be called on a StopIteration from the fetcher # and we assume that it is safe to init_fetches when fetcher is done # i.e., there are no more records stored internally else: self._fetcher.send_fetches() def _next_timeout(self): timeout = min(self._consumer_timeout, self._client._delayed_tasks.next_at() + time.time(), self._client.cluster.ttl() / 1000.0 + time.time()) # Although the delayed_tasks timeout above should cover processing # HeartbeatRequests, it is still possible that HeartbeatResponses # are left unprocessed during a long _fetcher iteration without # an intermediate poll(). And because tasks are responsible for # rescheduling themselves, an unprocessed response will prevent # the next heartbeat from being sent. This check should help # avoid that. if self._use_consumer_group(): heartbeat = time.time() + self._coordinator.heartbeat.ttl() timeout = min(timeout, heartbeat) return timeout def __iter__(self): # pylint: disable=non-iterator-returned return self def __next__(self): if not self._iterator: self._iterator = self._message_generator() self._set_consumer_timeout() try: return next(self._iterator) except StopIteration: self._iterator = None raise def _set_consumer_timeout(self): # consumer_timeout_ms can be used to stop iteration early if self.config['consumer_timeout_ms'] >= 0: self._consumer_timeout = time.time() + ( self.config['consumer_timeout_ms'] / 1000.0) # old KafkaConsumer methods are deprecated def configure(self, **configs): raise NotImplementedError( 'deprecated -- initialize a new consumer') def set_topic_partitions(self, *topics): raise NotImplementedError( 'deprecated -- use subscribe() or assign()') def fetch_messages(self): raise NotImplementedError( 'deprecated -- use poll() or iterator interface') def get_partition_offsets(self, topic, partition, request_time_ms, max_num_offsets): raise NotImplementedError( 'deprecated -- send an OffsetRequest with KafkaClient') def offsets(self, group=None): raise NotImplementedError('deprecated -- use committed(partition)') def task_done(self, message): raise NotImplementedError( 'deprecated -- commit offsets manually if needed')
class AIOKafkaConsumer(object): """Consume records from a Kafka cluster. The consumer will transparently handle the failure of servers in the Kafka cluster, and adapt as topic-partitions are created or migrate between brokers. It also interacts with the assigned kafka Group Coordinator node to allow multiple consumers to load balance consumption of topics (feature of kafka >= 0.9.0.0). Arguments: *topics (str): optional list of topics to subscribe to. If not set, call subscribe() or assign() before consuming records. bootstrap_servers: 'host[:port]' string (or list of 'host[:port]' strings) that the consumer should contact to bootstrap initial cluster metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to a Metadata API Request. Default port is 9092. If no servers are specified, will default to localhost:9092. client_id (str): a name for this client. This string is passed in each request to servers and can be used to identify specific server-side log entries that correspond to this client. Also submitted to GroupCoordinator for logging with respect to consumer group administration. Default: 'aiokafka-{version}' group_id (str or None): name of the consumer group to join for dynamic partition assignment (if enabled), and to use for fetching and committing offsets. If None, auto-partition assignment (via group coordinator) and offset commits are disabled. Default: None key_deserializer (callable): Any callable that takes a raw message key and returns a deserialized key. value_deserializer (callable, optional): Any callable that takes a raw message value and returns a deserialized value. fetch_min_bytes (int): Minimum amount of data the server should return for a fetch request, otherwise wait up to fetch_max_wait_ms for more data to accumulate. Default: 1. fetch_max_wait_ms (int): The maximum amount of time in milliseconds the server will block before answering the fetch request if there isn't sufficient data to immediately satisfy the requirement given by fetch_min_bytes. Default: 500. max_partition_fetch_bytes (int): The maximum amount of data per-partition the server will return. The maximum total memory used for a request = #partitions * max_partition_fetch_bytes. This size must be at least as large as the maximum message size the server allows or else it is possible for the producer to send messages larger than the consumer can fetch. If that happens, the consumer can get stuck trying to fetch a large message on a certain partition. Default: 1048576. request_timeout_ms (int): Client request timeout in milliseconds. Default: 40000. retry_backoff_ms (int): Milliseconds to backoff when retrying on errors. Default: 100. auto_offset_reset (str): A policy for resetting offsets on OffsetOutOfRange errors: 'earliest' will move to the oldest available message, 'latest' will move to the most recent. Any ofther value will raise the exception. Default: 'latest'. enable_auto_commit (bool): If true the consumer's offset will be periodically committed in the background. Default: True. auto_commit_interval_ms (int): milliseconds between automatic offset commits, if enable_auto_commit is True. Default: 5000. check_crcs (bool): Automatically check the CRC32 of the records consumed. This ensures no on-the-wire or on-disk corruption to the messages occurred. This check adds some overhead, so it may be disabled in cases seeking extreme performance. Default: True metadata_max_age_ms (int): The period of time in milliseconds after which we force a refresh of metadata even if we haven't seen any partition leadership changes to proactively discover any new brokers or partitions. Default: 300000 partition_assignment_strategy (list): List of objects to use to distribute partition ownership amongst consumer instances when group management is used. This preference is implicit in the order of the strategies in the list. When assignment strategy changes: to support a change to the assignment strategy, new versions must enable support both for the old assignment strategy and the new one. The coordinator will choose the old assignment strategy until all members have been updated. Then it will choose the new strategy. Default: [RoundRobinPartitionAssignor] heartbeat_interval_ms (int): The expected time in milliseconds between heartbeats to the consumer coordinator when using Kafka's group management feature. Heartbeats are used to ensure that the consumer's session stays active and to facilitate rebalancing when new consumers join or leave the group. The value must be set lower than session_timeout_ms, but typically should be set no higher than 1/3 of that value. It can be adjusted even lower to control the expected time for normal rebalances. Default: 3000 session_timeout_ms (int): The timeout used to detect failures when using Kafka's group managementment facilities. Default: 30000 consumer_timeout_ms (int): maximum wait timeout for background fetching routine. Mostly defines how fast the system will see rebalance and request new data for new partitions. Default: 200 api_version (str): specify which kafka API version to use. AIOKafkaConsumer supports Kafka API versions >=0.9 only. If set to 'auto', will attempt to infer the broker version by probing various APIs. Default: auto Note: Many configuration parameters are taken from Java Client: https://kafka.apache.org/documentation.html#newconsumerconfigs """ def __init__(self, *topics, loop, bootstrap_servers='localhost', client_id='aiokafka-' + __version__, group_id=None, key_deserializer=None, value_deserializer=None, fetch_max_wait_ms=500, fetch_min_bytes=1, max_partition_fetch_bytes=1 * 1024 * 1024, request_timeout_ms=40 * 1000, retry_backoff_ms=100, auto_offset_reset='latest', enable_auto_commit=True, auto_commit_interval_ms=5000, check_crcs=True, metadata_max_age_ms=5 * 60 * 1000, partition_assignment_strategy=(RoundRobinPartitionAssignor, ), heartbeat_interval_ms=3000, session_timeout_ms=30000, consumer_timeout_ms=200, api_version='auto'): if api_version not in ('auto', '0.9', '0.10'): raise ValueError("Unsupported Kafka API version") self._client = AIOKafkaClient(loop=loop, bootstrap_servers=bootstrap_servers, client_id=client_id, metadata_max_age_ms=metadata_max_age_ms, request_timeout_ms=request_timeout_ms, api_version=api_version) self._group_id = group_id self._heartbeat_interval_ms = heartbeat_interval_ms self._retry_backoff_ms = retry_backoff_ms self._enable_auto_commit = enable_auto_commit self._auto_commit_interval_ms = auto_commit_interval_ms self._partition_assignment_strategy = partition_assignment_strategy self._key_deserializer = key_deserializer self._value_deserializer = value_deserializer self._fetch_min_bytes = fetch_min_bytes self._fetch_max_wait_ms = fetch_max_wait_ms self._max_partition_fetch_bytes = max_partition_fetch_bytes self._consumer_timeout = consumer_timeout_ms / 1000 self._check_crcs = check_crcs self._subscription = SubscriptionState(auto_offset_reset) self._fetcher = None self._coordinator = None self._closed = False self._loop = loop if topics: self._client.set_topics(topics) self._subscription.subscribe(topics=topics) @asyncio.coroutine def start(self): yield from self._client.bootstrap() if self._client.api_version < (0, 9): raise ValueError("Unsupported Kafka version: {}".format( self._client.api_version)) self._fetcher = Fetcher( self._client, self._subscription, loop=self._loop, key_deserializer=self._key_deserializer, value_deserializer=self._value_deserializer, fetch_min_bytes=self._fetch_min_bytes, fetch_max_wait_ms=self._fetch_max_wait_ms, max_partition_fetch_bytes=self._max_partition_fetch_bytes, check_crcs=self._check_crcs, fetcher_timeout=self._consumer_timeout) if self._group_id is not None: # using group coordinator for automatic partitions assignment self._coordinator = GroupCoordinator( self._client, self._subscription, loop=self._loop, group_id=self._group_id, heartbeat_interval_ms=self._heartbeat_interval_ms, retry_backoff_ms=self._retry_backoff_ms, enable_auto_commit=self._enable_auto_commit, auto_commit_interval_ms=self._auto_commit_interval_ms, assignors=self._partition_assignment_strategy) self._coordinator.on_group_rebalanced(self._on_change_subscription) yield from self._coordinator.ensure_active_group() elif self._subscription.needs_partition_assignment: # using manual partitions assignment by topic(s) yield from self._client.force_metadata_update() partitions = [] for topic in self._subscription.subscription: p_ids = self.partitions_for_topic(topic) if not p_ids: raise UnknownTopicOrPartitionError() for p_id in p_ids: partitions.append(TopicPartition(topic, p_id)) self._subscription.unsubscribe() self._subscription.assign_from_user(partitions) yield from self._update_fetch_positions( self._subscription.missing_fetch_positions()) def assign(self, partitions): """Manually assign a list of TopicPartitions to this consumer. Arguments: partitions (list of TopicPartition): assignment for this instance. Raises: IllegalStateError: if consumer has already called subscribe() Warning: It is not possible to use both manual partition assignment with assign() and group assignment with subscribe(). Note: This interface does not support incremental assignment and will replace the previous assignment (if there was one). Note: Manual topic assignment through this method does not use the consumer's group management functionality. As such, there will be no rebalance operation triggered when group membership or cluster and topic metadata change. """ for tp in partitions: p_ids = self.partitions_for_topic(tp.topic) if not p_ids or tp.partition not in p_ids: raise UnknownTopicOrPartitionError(tp) self._subscription.assign_from_user(partitions) self._on_change_subscription() self._client.set_topics([tp.topic for tp in partitions]) def assignment(self): """Get the TopicPartitions currently assigned to this consumer. If partitions were directly assigned using assign(), then this will simply return the same partitions that were previously assigned. If topics were subscribed using subscribe(), then this will give the set of topic partitions currently assigned to the consumer (which may be none if the assignment hasn't happened yet or if the partitions are in the process of being reassigned). Returns: set: {TopicPartition, ...} """ return self._subscription.assigned_partitions() @asyncio.coroutine def stop(self): """Close the consumer, waiting indefinitely for any needed cleanup.""" if self._closed: return log.debug("Closing the KafkaConsumer.") self._closed = True if self._coordinator: yield from self._coordinator.close() if self._fetcher: yield from self._fetcher.close() yield from self._client.close() log.debug("The KafkaConsumer has closed.") @asyncio.coroutine def commit(self, offsets=None): """Commit offsets to kafka, blocking until success or error This commits offsets only to Kafka. The offsets committed using this API will be used on the first fetch after every rebalance and also on startup. As such, if you need to store offsets in anything other than Kafka, this API should not be used. Blocks until either the commit succeeds or an unrecoverable error is encountered (in which case it is thrown to the caller). Currently only supports kafka-topic offset storage (not zookeeper) Arguments: offsets (dict, optional): {TopicPartition: OffsetAndMetadata} dict to commit with the configured group_id. Defaults to current consumed offsets for all subscribed partitions. """ assert self._group_id is not None, 'Requires group_id' if offsets is None: offsets = self._subscription.all_consumed_offsets() else: # validate `offsets` structure assert all(map(lambda k: isinstance(k, TopicPartition), offsets)) assert all( map(lambda v: isinstance(v, OffsetAndMetadata), offsets.values())) yield from self._coordinator.commit_offsets(offsets) @asyncio.coroutine def committed(self, partition): """Get the last committed offset for the given partition This offset will be used as the position for the consumer in the event of a failure. This call may block to do a remote call if the partition in question isn't assigned to this consumer or if the consumer hasn't yet initialized its cache of committed offsets. Arguments: partition (TopicPartition): the partition to check Returns: The last committed offset, or None if there was no prior commit. """ assert self._group_id is not None, 'Requires group_id' if self._subscription.is_assigned(partition): committed = self._subscription.assignment[partition].committed if committed is None: yield from self._coordinator.refresh_committed_offsets() committed = self._subscription.assignment[partition].committed else: commit_map = yield from self._coordinator.fetch_committed_offsets( [partition]) if partition in commit_map: committed = commit_map[partition].offset else: committed = None return committed @asyncio.coroutine def topics(self): """Get all topics the user is authorized to view. Returns: set: topics """ cluster = yield from self._client.fetch_all_metadata() return cluster.topics() def partitions_for_topic(self, topic): """Get metadata about the partitions for a given topic. Arguments: topic (str): topic to check Returns: set: partition ids """ return self._client.cluster.partitions_for_topic(topic) @asyncio.coroutine def position(self, partition): """Get the offset of the next record that will be fetched Arguments: partition (TopicPartition): partition to check Returns: int: offset """ assert self._subscription.is_assigned(partition), \ 'Partition is not assigned' offset = self._subscription.assignment[partition].position if offset is None: yield from self._update_fetch_positions(partition) offset = self._subscription.assignment[partition].position return offset def highwater(self, partition): """Last known highwater offset for a partition A highwater offset is the offset that will be assigned to the next message that is produced. It may be useful for calculating lag, by comparing with the reported position. Note that both position and highwater refer to the *next* offset -- i.e., highwater offset is one greater than the newest availabel message. Highwater offsets are returned in FetchResponse messages, so will not be available if not FetchRequests have been sent for this partition yet. Arguments: partition (TopicPartition): partition to check Returns: int or None: offset if available """ assert self._subscription.is_assigned(partition), \ 'Partition is not assigned' return self._subscription.assignment[partition].highwater def seek(self, partition, offset): """Manually specify the fetch offset for a TopicPartition. Overrides the fetch offsets that the consumer will use on the next poll(). If this API is invoked for the same partition more than once, the latest offset will be used on the next poll(). Note that you may lose data if this API is arbitrarily used in the middle of consumption, to reset the fetch offsets. Arguments: partition (TopicPartition): partition for seek operation offset (int): message offset in partition Raises: AssertionError: if offset is not an int >= 0; or if partition is not currently assigned. """ assert isinstance(offset, int) and offset >= 0, 'Offset must be >= 0' assert partition in self._subscription.assigned_partitions(), \ 'Unassigned partition' log.debug("Seeking to offset %s for partition %s", offset, partition) self._subscription.assignment[partition].seek(offset) @asyncio.coroutine def seek_to_committed(self, *partitions): """Seek to the committed offset for partitions Arguments: partitions: optionally provide specific TopicPartitions, otherwise default to all assigned partitions Raises: AssertionError: if any partition is not currently assigned, or if no partitions are assigned """ if not partitions: partitions = self._subscription.assigned_partitions() assert partitions, 'No partitions are currently assigned' else: for p in partitions: assert p in self._subscription.assigned_partitions(), \ 'Unassigned partition' for tp in partitions: log.debug("Seeking to committed of partition %s", tp) offset = yield from self.committed(tp) if offset and offset > 0: self.seek(tp, offset) def subscribe(self, topics=(), pattern=None, listener=None): """Subscribe to a list of topics, or a topic regex pattern Partitions will be dynamically assigned via a group coordinator. Topic subscriptions are not incremental: this list will replace the current assignment (if there is one). This method is incompatible with assign() Arguments: topics (list): List of topics for subscription. pattern (str): Pattern to match available topics. You must provide either topics or pattern, but not both. listener (ConsumerRebalanceListener): Optionally include listener callback, which will be called before and after each rebalance operation. As part of group management, the consumer will keep track of the list of consumers that belong to a particular group and will trigger a rebalance operation if one of the following events trigger: * Number of partitions change for any of the subscribed topics * Topic is created or deleted * An existing member of the consumer group dies * A new member is added to the consumer group When any of these events are triggered, the provided listener will be invoked first to indicate that the consumer's assignment has been revoked, and then again when the new assignment has been received. Note that this listener will immediately override any listener set in a previous call to subscribe. It is guaranteed, however, that the partitions revoked/assigned through this interface are from topics subscribed in this call. Raises: IllegalStateError: if called after previously calling assign() AssertionError: if neither topics or pattern is provided TypeError: if listener is not a ConsumerRebalanceListener """ # SubscriptionState handles error checking self._subscription.subscribe(topics=topics, pattern=pattern, listener=listener) # regex will need all topic metadata if pattern is not None: self._client.set_topics([]) log.debug("Subscribed to topic pattern: %s", pattern) else: self._client.set_topics(self._subscription.group_subscription()) log.debug("Subscribed to topic(s): %s", topics) def subscription(self): """Get the current topic subscription. Returns: set: {topic, ...} """ return self._subscription.subscription def unsubscribe(self): """Unsubscribe from all topics and clear all assigned partitions.""" self._subscription.unsubscribe() self._client.set_topics([]) log.debug( "Unsubscribed all topics or patterns and assigned partitions") @asyncio.coroutine def _update_fetch_positions(self, partitions): """ Set the fetch position to the committed position (if there is one) or reset it using the offset reset policy the user has configured. Arguments: partitions (List[TopicPartition]): The partitions that need updating fetch positions Raises: NoOffsetForPartitionError: If no offset is stored for a given partition and no offset reset policy is defined """ if self._group_id is not None: # refresh commits for all assigned partitions yield from self._coordinator.refresh_committed_offsets() # then do any offset lookups in case some positions are not known yield from self._fetcher.update_fetch_positions(partitions) def _on_change_subscription(self): """This is `group rebalanced` signal handler for update fetch positions of assigned partitions""" # fetch positions if we have partitions we're subscribed # to that we don't know the offset for if not self._subscription.has_all_fetch_positions(): ensure_future(self._update_fetch_positions( self._subscription.missing_fetch_positions()), loop=self._loop) @asyncio.coroutine def getone(self, *partitions): """ Get one message from Kafka If no new messages prefetched, this method will wait for it Arguments: partitions (List[TopicPartition]): Optional list of partitions to return from. If no partitions specified then returned message will be from any partition, which consumer is subscribed to. Returns: ConsumerRecord Will return instance of .. code:: python collections.namedtuple( "ConsumerRecord", ["topic", "partition", "offset", "key", "value"]) Example usage: .. code:: python while True: message = yield from consumer.getone() topic = message.topic partition = message.partition # Process message print(message.offset, message.key, message.value) """ assert all(map(lambda k: isinstance(k, TopicPartition), partitions)) msg = yield from self._fetcher.next_record(partitions) return msg @asyncio.coroutine def getmany(self, *partitions, timeout_ms=0): """Get messages from assigned topics / partitions. Prefetched messages are returned in batches by topic-partition. If messages is not available in the prefetched buffer this method waits `timeout_ms` milliseconds. Arguments: partitions (List[TopicPartition]): The partitions that need fetching message. If no one partition specified then all subscribed partitions will be used timeout_ms (int, optional): milliseconds spent waiting if data is not available in the buffer. If 0, returns immediately with any records that are available currently in the buffer, else returns empty. Must not be negative. Default: 0 Returns: dict: topic to list of records since the last fetch for the subscribed list of topics and partitions Example usage: .. code:: python data = yield from consumer.getmany() for tp, messages in data.items(): topic = tp.topic partition = tp.partition for message in messages: # Process message print(message.offset, message.key, message.value) """ assert all(map(lambda k: isinstance(k, TopicPartition), partitions)) timeout = timeout_ms / 1000 records = yield from self._fetcher.fetched_records(partitions, timeout) return records if PY_35: @asyncio.coroutine def __aiter__(self): return self @asyncio.coroutine def __anext__(self): """Asyncio iterator interface for consumer Note: TopicAuthorizationFailedError and OffsetOutOfRangeError exceptions can be raised in iterator. All other KafkaError exceptions will be logged and not raised """ while True: try: return (yield from self.getone()) except (TopicAuthorizationFailedError, OffsetOutOfRangeError) as err: raise err except KafkaError as err: log.error("error in consumer iterator: %s", err)
class KafkaConsumer(six.Iterator): """Consume records from a Kafka cluster. The consumer will transparently handle the failure of servers in the Kafka cluster, and adapt as topic-partitions are created or migrate between brokers. It also interacts with the assigned kafka Group Coordinator node to allow multiple consumers to load balance consumption of topics (requires kafka >= 0.9.0.0). Arguments: *topics (str): optional list of topics to subscribe to. If not set, call subscribe() or assign() before consuming records. Keyword Arguments: bootstrap_servers: 'host[:port]' string (or list of 'host[:port]' strings) that the consumer should contact to bootstrap initial cluster metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to a Metadata API Request. Default port is 9092. If no servers are specified, will default to localhost:9092. client_id (str): a name for this client. This string is passed in each request to servers and can be used to identify specific server-side log entries that correspond to this client. Also submitted to GroupCoordinator for logging with respect to consumer group administration. Default: 'kafka-python-{version}' group_id (str): name of the consumer group to join for dynamic partition assignment (if enabled), and to use for fetching and committing offsets. Default: 'kafka-python-default-group' key_deserializer (callable): Any callable that takes a raw message key and returns a deserialized key. value_deserializer (callable, optional): Any callable that takes a raw message value and returns a deserialized value. fetch_min_bytes (int): Minimum amount of data the server should return for a fetch request, otherwise wait up to fetch_max_wait_ms for more data to accumulate. Default: 1024. fetch_max_wait_ms (int): The maximum amount of time in milliseconds the server will block before answering the fetch request if there isn't sufficient data to immediately satisfy the requirement given by fetch_min_bytes. Default: 500. max_partition_fetch_bytes (int): The maximum amount of data per-partition the server will return. The maximum total memory used for a request = #partitions * max_partition_fetch_bytes. This size must be at least as large as the maximum message size the server allows or else it is possible for the producer to send messages larger than the consumer can fetch. If that happens, the consumer can get stuck trying to fetch a large message on a certain partition. Default: 1048576. request_timeout_ms (int): Client request timeout in milliseconds. Default: 40000. retry_backoff_ms (int): Milliseconds to backoff when retrying on errors. Default: 100. reconnect_backoff_ms (int): The amount of time in milliseconds to wait before attempting to reconnect to a given host. Default: 50. max_in_flight_requests_per_connection (int): Requests are pipelined to kafka brokers up to this number of maximum requests per broker connection. Default: 5. auto_offset_reset (str): A policy for resetting offsets on OffsetOutOfRange errors: 'earliest' will move to the oldest available message, 'latest' will move to the most recent. Any ofther value will raise the exception. Default: 'latest'. enable_auto_commit (bool): If true the consumer's offset will be periodically committed in the background. Default: True. auto_commit_interval_ms (int): milliseconds between automatic offset commits, if enable_auto_commit is True. Default: 5000. default_offset_commit_callback (callable): called as callback(offsets, response) response will be either an Exception or a OffsetCommitResponse struct. This callback can be used to trigger custom actions when a commit request completes. check_crcs (bool): Automatically check the CRC32 of the records consumed. This ensures no on-the-wire or on-disk corruption to the messages occurred. This check adds some overhead, so it may be disabled in cases seeking extreme performance. Default: True metadata_max_age_ms (int): The period of time in milliseconds after which we force a refresh of metadata even if we haven't seen any partition leadership changes to proactively discover any new brokers or partitions. Default: 300000 partition_assignment_strategy (list): List of objects to use to distribute partition ownership amongst consumer instances when group management is used. Default: [RoundRobinPartitionAssignor] heartbeat_interval_ms (int): The expected time in milliseconds between heartbeats to the consumer coordinator when using Kafka's group management feature. Heartbeats are used to ensure that the consumer's session stays active and to facilitate rebalancing when new consumers join or leave the group. The value must be set lower than session_timeout_ms, but typically should be set no higher than 1/3 of that value. It can be adjusted even lower to control the expected time for normal rebalances. Default: 3000 session_timeout_ms (int): The timeout used to detect failures when using Kafka's group managementment facilities. Default: 30000 send_buffer_bytes (int): The size of the TCP send buffer (SO_SNDBUF) to use when sending data. Default: 131072 receive_buffer_bytes (int): The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. Default: 32768 consumer_timeout_ms (int): number of millisecond to throw a timeout exception to the consumer if no message is available for consumption. Default: -1 (dont throw exception) api_version (str): specify which kafka API version to use. 0.9 enables full group coordination features; 0.8.2 enables kafka-storage offset commits; 0.8.1 enables zookeeper-storage offset commits; 0.8.0 is what is left. If set to 'auto', will attempt to infer the broker version by probing various APIs. Default: auto Note: Configuration parameters are described in more detail at https://kafka.apache.org/090/configuration.html#newconsumerconfigs """ DEFAULT_CONFIG = { "bootstrap_servers": "localhost", "client_id": "kafka-python-" + __version__, "group_id": "kafka-python-default-group", "key_deserializer": None, "value_deserializer": None, "fetch_max_wait_ms": 500, "fetch_min_bytes": 1024, "max_partition_fetch_bytes": 1 * 1024 * 1024, "request_timeout_ms": 40 * 1000, "retry_backoff_ms": 100, "reconnect_backoff_ms": 50, "max_in_flight_requests_per_connection": 5, "auto_offset_reset": "latest", "enable_auto_commit": True, "auto_commit_interval_ms": 5000, "check_crcs": True, "metadata_max_age_ms": 5 * 60 * 1000, "partition_assignment_strategy": (RoundRobinPartitionAssignor,), "heartbeat_interval_ms": 3000, "session_timeout_ms": 30000, "send_buffer_bytes": 128 * 1024, "receive_buffer_bytes": 32 * 1024, "consumer_timeout_ms": -1, "api_version": "auto", "connections_max_idle_ms": 9 * 60 * 1000, # not implemented yet #'metric_reporters': None, #'metrics_num_samples': 2, #'metrics_sample_window_ms': 30000, } def __init__(self, *topics, **configs): self.config = copy.copy(self.DEFAULT_CONFIG) for key in self.config: if key in configs: self.config[key] = configs.pop(key) # Only check for extra config keys in top-level class assert not configs, "Unrecognized configs: %s" % configs deprecated = {"smallest": "earliest", "largest": "latest"} if self.config["auto_offset_reset"] in deprecated: new_config = deprecated[self.config["auto_offset_reset"]] log.warning("use auto_offset_reset=%s (%s is deprecated)", new_config, self.config["auto_offset_reset"]) self.config["auto_offset_reset"] = new_config self._client = KafkaClient(**self.config) # Check Broker Version if not set explicitly if self.config["api_version"] == "auto": self.config["api_version"] = self._client.check_version() assert self.config["api_version"] in ("0.9", "0.8.2", "0.8.1", "0.8.0") # Convert api_version config to tuple for easy comparisons self.config["api_version"] = tuple(map(int, self.config["api_version"].split("."))) self._subscription = SubscriptionState(self.config["auto_offset_reset"]) self._fetcher = Fetcher(self._client, self._subscription, **self.config) self._coordinator = ConsumerCoordinator( self._client, self._subscription, assignors=self.config["partition_assignment_strategy"], **self.config ) self._closed = False self._iterator = None self._consumer_timeout = float("inf") # self.metrics = None if topics: self._subscription.subscribe(topics=topics) self._client.set_topics(topics) def assign(self, partitions): """Manually assign a list of TopicPartitions to this consumer. Arguments: partitions (list of TopicPartition): assignment for this instance. Raises: IllegalStateError: if consumer has already called subscribe() Warning: It is not possible to use both manual partition assignment with assign() and group assignment with subscribe(). Note: This interface does not support incremental assignment and will replace the previous assignment (if there was one). Note: Manual topic assignment through this method does not use the consumer's group management functionality. As such, there will be no rebalance operation triggered when group membership or cluster and topic metadata change. """ self._subscription.assign_from_user(partitions) self._client.set_topics([tp.topic for tp in partitions]) def assignment(self): """Get the TopicPartitions currently assigned to this consumer. If partitions were directly assigned using assign(), then this will simply return the same partitions that were previously assigned. If topics were subscribed using subscribe(), then this will give the set of topic partitions currently assigned to the consumer (which may be none if the assignment hasn't happened yet, or if the partitions are in the process of being reassigned). Returns: set: {TopicPartition, ...} """ return self._subscription.assigned_partitions() def close(self): """Close the consumer, waiting indefinitely for any needed cleanup.""" if self._closed: return log.debug("Closing the KafkaConsumer.") self._closed = True self._coordinator.close() # self.metrics.close() self._client.close() try: self.config["key_deserializer"].close() except AttributeError: pass try: self.config["value_deserializer"].close() except AttributeError: pass log.debug("The KafkaConsumer has closed.") def commit_async(self, offsets=None, callback=None): """Commit offsets to kafka asynchronously, optionally firing callback This commits offsets only to Kafka. The offsets committed using this API will be used on the first fetch after every rebalance and also on startup. As such, if you need to store offsets in anything other than Kafka, this API should not be used. This is an asynchronous call and will not block. Any errors encountered are either passed to the callback (if provided) or discarded. Arguments: offsets (dict, optional): {TopicPartition: OffsetAndMetadata} dict to commit with the configured group_id. Defaults to current consumed offsets for all subscribed partitions. callback (callable, optional): called as callback(offsets, response) with response as either an Exception or a OffsetCommitResponse struct. This callback can be used to trigger custom actions when a commit request completes. Returns: kafka.future.Future """ assert self.config["api_version"] >= (0, 8, 1) if offsets is None: offsets = self._subscription.all_consumed_offsets() log.debug("Committing offsets: %s", offsets) future = self._coordinator.commit_offsets_async(offsets, callback=callback) return future def commit(self, offsets=None): """Commit offsets to kafka, blocking until success or error This commits offsets only to Kafka. The offsets committed using this API will be used on the first fetch after every rebalance and also on startup. As such, if you need to store offsets in anything other than Kafka, this API should not be used. Blocks until either the commit succeeds or an unrecoverable error is encountered (in which case it is thrown to the caller). Currently only supports kafka-topic offset storage (not zookeeper) Arguments: offsets (dict, optional): {TopicPartition: OffsetAndMetadata} dict to commit with the configured group_id. Defaults to current consumed offsets for all subscribed partitions. """ assert self.config["api_version"] >= (0, 8, 1) if offsets is None: offsets = self._subscription.all_consumed_offsets() self._coordinator.commit_offsets_sync(offsets) def committed(self, partition): """Get the last committed offset for the given partition This offset will be used as the position for the consumer in the event of a failure. This call may block to do a remote call if the partition in question isn't assigned to this consumer or if the consumer hasn't yet initialized its cache of committed offsets. Arguments: partition (TopicPartition): the partition to check Returns: The last committed offset, or None if there was no prior commit. """ assert self.config["api_version"] >= (0, 8, 1) if self._subscription.is_assigned(partition): committed = self._subscription.assignment[partition].committed if committed is None: self._coordinator.refresh_committed_offsets_if_needed() committed = self._subscription.assignment[partition].committed else: commit_map = self._coordinator.fetch_committed_offsets([partition]) if partition in commit_map: committed = commit_map[partition].offset else: committed = None return committed def topics(self): """Get all topic metadata topics the user is authorized to view. [Not Implemented Yet] Returns: {topic: [partition_info]} """ raise NotImplementedError("TODO") def partitions_for_topic(self, topic): """Get metadata about the partitions for a given topic. Arguments: topic (str): topic to check Returns: set: partition ids """ return self._client.cluster.partitions_for_topic(topic) def poll(self, timeout_ms=0): """Fetch data from assigned topics / partitions. Records are fetched and returned in batches by topic-partition. On each poll, consumer will try to use the last consumed offset as the starting offset and fetch sequentially. The last consumed offset can be manually set through seek(partition, offset) or automatically set as the last committed offset for the subscribed list of partitions. Incompatible with iterator interface -- use one or the other, not both. Arguments: timeout_ms (int, optional): milliseconds to spend waiting in poll if data is not available. If 0, returns immediately with any records that are available now. Must not be negative. Default: 0 Returns: dict: topic to list of records since the last fetch for the subscribed list of topics and partitions """ assert timeout_ms >= 0, "Timeout must not be negative" assert self._iterator is None, "Incompatible with iterator interface" # poll for new data until the timeout expires start = time.time() remaining = timeout_ms while True: records = self._poll_once(remaining) if records: # before returning the fetched records, we can send off the # next round of fetches and avoid block waiting for their # responses to enable pipelining while the user is handling the # fetched records. self._fetcher.init_fetches() return records elapsed_ms = (time.time() - start) * 1000 remaining = timeout_ms - elapsed_ms if remaining <= 0: return {} def _poll_once(self, timeout_ms): """ Do one round of polling. In addition to checking for new data, this does any needed heart-beating, auto-commits, and offset updates. Arguments: timeout_ms (int): The maximum time in milliseconds to block Returns: dict: map of topic to list of records (may be empty) """ if self.config["api_version"] >= (0, 8, 2): # TODO: Sub-requests should take into account the poll timeout (KAFKA-1894) self._coordinator.ensure_coordinator_known() if self.config["api_version"] >= (0, 9): # ensure we have partitions assigned if we expect to if self._subscription.partitions_auto_assigned(): self._coordinator.ensure_active_group() # fetch positions if we have partitions we're subscribed to that we # don't know the offset for if not self._subscription.has_all_fetch_positions(): self._update_fetch_positions(self._subscription.missing_fetch_positions()) # init any new fetches (won't resend pending fetches) records = self._fetcher.fetched_records() # if data is available already, e.g. from a previous network client # poll() call to commit, then just return it immediately if records: return records self._fetcher.init_fetches() self._client.poll(timeout_ms) return self._fetcher.fetched_records() def position(self, partition): """Get the offset of the next record that will be fetched Arguments: partition (TopicPartition): partition to check """ assert self._subscription.is_assigned(partition) offset = self._subscription.assignment[partition].position if offset is None: self._update_fetch_positions(partition) offset = self._subscription.assignment[partition].position return offset def pause(self, *partitions): """Suspend fetching from the requested partitions. Future calls to poll() will not return any records from these partitions until they have been resumed using resume(). Note that this method does not affect partition subscription. In particular, it does not cause a group rebalance when automatic assignment is used. Arguments: *partitions (TopicPartition): partitions to pause """ for partition in partitions: log.debug("Pausing partition %s", partition) self._subscription.pause(partition) def resume(self, *partitions): """Resume fetching from the specified (paused) partitions. Arguments: *partitions (TopicPartition): partitions to resume """ for partition in partitions: log.debug("Resuming partition %s", partition) self._subscription.resume(partition) def seek(self, partition, offset): """Manually specify the fetch offset for a TopicPartition. Overrides the fetch offsets that the consumer will use on the next poll(). If this API is invoked for the same partition more than once, the latest offset will be used on the next poll(). Note that you may lose data if this API is arbitrarily used in the middle of consumption, to reset the fetch offsets. Arguments: partition (TopicPartition): partition for seek operation offset (int): message offset in partition """ assert offset >= 0 log.debug("Seeking to offset %s for partition %s", offset, partition) self._subscription.assignment[partition].seek(offset) def seek_to_beginning(self, *partitions): """Seek to the oldest available offset for partitions. Arguments: *partitions: optionally provide specific TopicPartitions, otherwise default to all assigned partitions """ if not partitions: partitions = self._subscription.assigned_partitions() for tp in partitions: log.debug("Seeking to beginning of partition %s", tp) self._subscription.need_offset_reset(tp, OffsetResetStrategy.EARLIEST) def seek_to_end(self, *partitions): """Seek to the most recent available offset for partitions. Arguments: *partitions: optionally provide specific TopicPartitions, otherwise default to all assigned partitions """ if not partitions: partitions = self._subscription.assigned_partitions() for tp in partitions: log.debug("Seeking to end of partition %s", tp) self._subscription.need_offset_reset(tp, OffsetResetStrategy.LATEST) def subscribe(self, topics=(), pattern=None, listener=None): """Subscribe to a list of topics, or a topic regex pattern Partitions will be dynamically assigned via a group coordinator. Topic subscriptions are not incremental: this list will replace the current assignment (if there is one). This method is incompatible with assign() Arguments: topics (list): List of topics for subscription. pattern (str): Pattern to match available topics. You must provide either topics or pattern, but not both. listener (ConsumerRebalanceListener): Optionally include listener callback, which will be called before and after each rebalance operation. As part of group management, the consumer will keep track of the list of consumers that belong to a particular group and will trigger a rebalance operation if one of the following events trigger: * Number of partitions change for any of the subscribed topics * Topic is created or deleted * An existing member of the consumer group dies * A new member is added to the consumer group When any of these events are triggered, the provided listener will be invoked first to indicate that the consumer's assignment has been revoked, and then again when the new assignment has been received. Note that this listener will immediately override any listener set in a previous call to subscribe. It is guaranteed, however, that the partitions revoked/assigned through this interface are from topics subscribed in this call. """ if not topics: self.unsubscribe() else: self._subscription.subscribe(topics=topics, pattern=pattern, listener=listener) # regex will need all topic metadata if pattern is not None: self._client.cluster.need_metadata_for_all = True log.debug("Subscribed to topic pattern: %s", topics) else: self._client.set_topics(self._subscription.group_subscription()) log.debug("Subscribed to topic(s): %s", topics) def subscription(self): """Get the current topic subscription. Returns: set: {topic, ...} """ return self._subscription.subscription def unsubscribe(self): """Unsubscribe from all topics and clear all assigned partitions.""" self._subscription.unsubscribe() self._coordinator.close() self._client.cluster.need_metadata_for_all_topics = False log.debug("Unsubscribed all topics or patterns and assigned partitions") def _update_fetch_positions(self, partitions): """ Set the fetch position to the committed position (if there is one) or reset it using the offset reset policy the user has configured. Arguments: partitions (List[TopicPartition]): The partitions that need updating fetch positions Raises: NoOffsetForPartitionError: If no offset is stored for a given partition and no offset reset policy is defined """ if self.config["api_version"] >= (0, 8, 1): # refresh commits for all assigned partitions self._coordinator.refresh_committed_offsets_if_needed() # then do any offset lookups in case some positions are not known self._fetcher.update_fetch_positions(partitions) def _message_generator(self): assert self.assignment() or self.subscription() is not None while time.time() < self._consumer_timeout: if self.config["api_version"] >= (0, 8, 2): self._coordinator.ensure_coordinator_known() if self.config["api_version"] >= (0, 9): # ensure we have partitions assigned if we expect to if self._subscription.partitions_auto_assigned(): self._coordinator.ensure_active_group() # fetch positions if we have partitions we're subscribed to that we # don't know the offset for if not self._subscription.has_all_fetch_positions(): partitions = self._subscription.missing_fetch_positions() self._update_fetch_positions(partitions) # We need to make sure we at least keep up with scheduled tasks, # like heartbeats, auto-commits, and metadata refreshes timeout_at = min( self._consumer_timeout, self._client._delayed_tasks.next_at() + time.time(), self._client.cluster.ttl() / 1000.0 + time.time(), ) if self.config["api_version"] >= (0, 9): if not self.assignment(): sleep_time = time.time() - timeout_at log.debug("No partitions assigned; sleeping for %s", sleep_time) time.sleep(sleep_time) continue poll_ms = 1000 * (time.time() - self._consumer_timeout) # Dont bother blocking if there are no fetches if not self._fetcher.in_flight_fetches(): poll_ms = 0 self._client.poll(poll_ms) if time.time() > timeout_at: continue for msg in self._fetcher: yield msg if time.time() > timeout_at: log.debug("internal iterator timeout - breaking for poll") break # an else block on a for loop only executes if there was no break # so this should only be called on a StopIteration from the fetcher # and we assume that it is safe to init_fetches when fetcher is done # i.e., there are no more records stored internally else: self._fetcher.init_fetches() def __iter__(self): # pylint: disable=non-iterator-returned return self def __next__(self): if not self._iterator: self._iterator = self._message_generator() self._set_consumer_timeout() try: return next(self._iterator) except StopIteration: self._iterator = None raise def _set_consumer_timeout(self): # consumer_timeout_ms can be used to stop iteration early if self.config["consumer_timeout_ms"] >= 0: self._consumer_timeout = time.time() + (self.config["consumer_timeout_ms"] / 1000.0) # old KafkaConsumer methods are deprecated def configure(self, **configs): raise NotImplementedError("deprecated -- initialize a new consumer") def set_topic_partitions(self, *topics): raise NotImplementedError("deprecated -- use subscribe() or assign()") def fetch_messages(self): raise NotImplementedError("deprecated -- use poll() or iterator interface") def get_partition_offsets(self, topic, partition, request_time_ms, max_num_offsets): raise NotImplementedError("deprecated -- send an OffsetRequest with KafkaClient") def offsets(self, group=None): raise NotImplementedError("deprecated -- use committed(partition)") def task_done(self, message): raise NotImplementedError("deprecated -- commit offsets manually if needed")
class AIOKafkaConsumer(object): """ A client that consumes records from a Kafka cluster. The consumer will transparently handle the failure of servers in the Kafka cluster, and adapt as topic-partitions are created or migrate between brokers. It also interacts with the assigned kafka Group Coordinator node to allow multiple consumers to load balance consumption of topics (feature of kafka >= 0.9.0.0). .. _create_connection: https://docs.python.org/3/library/asyncio-eventloop.html\ #creating-connections Arguments: *topics (str): optional list of topics to subscribe to. If not set, call subscribe() or assign() before consuming records. Passing topics directly is same as calling ``subscribe()`` API. bootstrap_servers: 'host[:port]' string (or list of 'host[:port]' strings) that the consumer should contact to bootstrap initial cluster metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to a Metadata API Request. Default port is 9092. If no servers are specified, will default to localhost:9092. client_id (str): a name for this client. This string is passed in each request to servers and can be used to identify specific server-side log entries that correspond to this client. Also submitted to GroupCoordinator for logging with respect to consumer group administration. Default: 'aiokafka-{version}' group_id (str or None): name of the consumer group to join for dynamic partition assignment (if enabled), and to use for fetching and committing offsets. If None, auto-partition assignment (via group coordinator) and offset commits are disabled. Default: None key_deserializer (callable): Any callable that takes a raw message key and returns a deserialized key. value_deserializer (callable, optional): Any callable that takes a raw message value and returns a deserialized value. fetch_min_bytes (int): Minimum amount of data the server should return for a fetch request, otherwise wait up to fetch_max_wait_ms for more data to accumulate. Default: 1. fetch_max_wait_ms (int): The maximum amount of time in milliseconds the server will block before answering the fetch request if there isn't sufficient data to immediately satisfy the requirement given by fetch_min_bytes. Default: 500. max_partition_fetch_bytes (int): The maximum amount of data per-partition the server will return. The maximum total memory used for a request = #partitions * max_partition_fetch_bytes. This size must be at least as large as the maximum message size the server allows or else it is possible for the producer to send messages larger than the consumer can fetch. If that happens, the consumer can get stuck trying to fetch a large message on a certain partition. Default: 1048576. max_poll_records (int): The maximum number of records returned in a single call to ``getmany()``. Defaults ``None``, no limit. request_timeout_ms (int): Client request timeout in milliseconds. Default: 40000. retry_backoff_ms (int): Milliseconds to backoff when retrying on errors. Default: 100. auto_offset_reset (str): A policy for resetting offsets on OffsetOutOfRange errors: 'earliest' will move to the oldest available message, 'latest' will move to the most recent. Any ofther value will raise the exception. Default: 'latest'. enable_auto_commit (bool): If true the consumer's offset will be periodically committed in the background. Default: True. auto_commit_interval_ms (int): milliseconds between automatic offset commits, if enable_auto_commit is True. Default: 5000. check_crcs (bool): Automatically check the CRC32 of the records consumed. This ensures no on-the-wire or on-disk corruption to the messages occurred. This check adds some overhead, so it may be disabled in cases seeking extreme performance. Default: True metadata_max_age_ms (int): The period of time in milliseconds after which we force a refresh of metadata even if we haven't seen any partition leadership changes to proactively discover any new brokers or partitions. Default: 300000 partition_assignment_strategy (list): List of objects to use to distribute partition ownership amongst consumer instances when group management is used. This preference is implicit in the order of the strategies in the list. When assignment strategy changes: to support a change to the assignment strategy, new versions must enable support both for the old assignment strategy and the new one. The coordinator will choose the old assignment strategy until all members have been updated. Then it will choose the new strategy. Default: [RoundRobinPartitionAssignor] heartbeat_interval_ms (int): The expected time in milliseconds between heartbeats to the consumer coordinator when using Kafka's group management feature. Heartbeats are used to ensure that the consumer's session stays active and to facilitate rebalancing when new consumers join or leave the group. The value must be set lower than session_timeout_ms, but typically should be set no higher than 1/3 of that value. It can be adjusted even lower to control the expected time for normal rebalances. Default: 3000 session_timeout_ms (int): The timeout used to detect failures when using Kafka's group managementment facilities. Default: 30000 consumer_timeout_ms (int): maximum wait timeout for background fetching routine. Mostly defines how fast the system will see rebalance and request new data for new partitions. Default: 200 api_version (str): specify which kafka API version to use. AIOKafkaConsumer supports Kafka API versions >=0.9 only. If set to 'auto', will attempt to infer the broker version by probing various APIs. Default: auto security_protocol (str): Protocol used to communicate with brokers. Valid values are: PLAINTEXT, SSL. Default: PLAINTEXT. ssl_context (ssl.SSLContext): pre-configured SSLContext for wrapping socket connections. Directly passed into asyncio's `create_connection`_. For more information see :ref:`ssl_auth`. Default: None. exclude_internal_topics (bool): Whether records from internal topics (such as offsets) should be exposed to the consumer. If set to True the only way to receive records from an internal topic is subscribing to it. Requires 0.10+ Default: True connections_max_idle_ms (int): Close idle connections after the number of milliseconds specified by this config. Default: 540000 (9hours). Note: Many configuration parameters are taken from Java Client: https://kafka.apache.org/documentation.html#newconsumerconfigs """ def __init__(self, *topics, loop, bootstrap_servers='localhost', client_id='aiokafka-' + __version__, group_id=None, key_deserializer=None, value_deserializer=None, fetch_max_wait_ms=500, fetch_min_bytes=1, max_partition_fetch_bytes=1 * 1024 * 1024, request_timeout_ms=40 * 1000, retry_backoff_ms=100, auto_offset_reset='latest', enable_auto_commit=True, auto_commit_interval_ms=5000, check_crcs=True, metadata_max_age_ms=5 * 60 * 1000, partition_assignment_strategy=(RoundRobinPartitionAssignor,), heartbeat_interval_ms=3000, session_timeout_ms=30000, consumer_timeout_ms=200, max_poll_records=None, ssl_context=None, security_protocol='PLAINTEXT', api_version='auto', exclude_internal_topics=True, connections_max_idle_ms=540000): if api_version not in ('auto', '0.9', '0.10'): raise ValueError("Unsupported Kafka API version") self._client = AIOKafkaClient( loop=loop, bootstrap_servers=bootstrap_servers, client_id=client_id, metadata_max_age_ms=metadata_max_age_ms, request_timeout_ms=request_timeout_ms, retry_backoff_ms=retry_backoff_ms, api_version=api_version, ssl_context=ssl_context, security_protocol=security_protocol, connections_max_idle_ms=connections_max_idle_ms) self._group_id = group_id self._heartbeat_interval_ms = heartbeat_interval_ms self._retry_backoff_ms = retry_backoff_ms self._request_timeout_ms = request_timeout_ms self._enable_auto_commit = enable_auto_commit self._auto_commit_interval_ms = auto_commit_interval_ms self._partition_assignment_strategy = partition_assignment_strategy self._key_deserializer = key_deserializer self._value_deserializer = value_deserializer self._fetch_min_bytes = fetch_min_bytes self._fetch_max_wait_ms = fetch_max_wait_ms self._max_partition_fetch_bytes = max_partition_fetch_bytes self._exclude_internal_topics = exclude_internal_topics if max_poll_records is not None and ( not isinstance(max_poll_records, int) or max_poll_records < 1): raise ValueError("`max_poll_records` should be positive Integer") self._max_poll_records = max_poll_records self._consumer_timeout = consumer_timeout_ms / 1000 self._check_crcs = check_crcs self._subscription = SubscriptionState(auto_offset_reset) self._fetcher = None self._coordinator = None self._closed = False self._loop = loop # Set for background updates, so we'll finalize them properly. Only # active tasks are in this set, as done ones are discarded by callback. self._pending_position_fetches = set([]) if topics: self._client.set_topics(topics) self._subscription.subscribe(topics=topics) @asyncio.coroutine def start(self): """ Connect to Kafka cluster. This will: * Load metadata for all cluster nodes and partition allocation * Wait for possible topic autocreation * Join group if ``group_id`` provided """ yield from self._client.bootstrap() yield from self._wait_topics() if self._client.api_version < (0, 9): raise ValueError("Unsupported Kafka version: {}".format( self._client.api_version)) self._fetcher = Fetcher( self._client, self._subscription, loop=self._loop, key_deserializer=self._key_deserializer, value_deserializer=self._value_deserializer, fetch_min_bytes=self._fetch_min_bytes, fetch_max_wait_ms=self._fetch_max_wait_ms, max_partition_fetch_bytes=self._max_partition_fetch_bytes, check_crcs=self._check_crcs, fetcher_timeout=self._consumer_timeout, retry_backoff_ms=self._retry_backoff_ms) if self._group_id is not None: # using group coordinator for automatic partitions assignment self._coordinator = GroupCoordinator( self._client, self._subscription, loop=self._loop, group_id=self._group_id, heartbeat_interval_ms=self._heartbeat_interval_ms, retry_backoff_ms=self._retry_backoff_ms, enable_auto_commit=self._enable_auto_commit, auto_commit_interval_ms=self._auto_commit_interval_ms, assignors=self._partition_assignment_strategy, exclude_internal_topics=self._exclude_internal_topics, assignment_changed_cb=self._on_change_subscription) yield from self._coordinator.ensure_active_group() else: # Using a simple assignment coordinator for reassignment on # metadata changes self._coordinator = NoGroupCoordinator( self._client, self._subscription, loop=self._loop, exclude_internal_topics=self._exclude_internal_topics, assignment_changed_cb=self._on_change_subscription) # If we passed `topics` to constructor. if self._subscription.needs_partition_assignment: yield from self._client.force_metadata_update() self._coordinator.assign_all_partitions(check_unknown=True) @asyncio.coroutine def _wait_topics(self): if not self._subscription.subscription: return for topic in self._subscription.subscription: yield from self._client._wait_on_metadata(topic) def assign(self, partitions): """ Manually assign a list of TopicPartitions to this consumer. This interface does not support incremental assignment and will replace the previous assignment (if there was one). Arguments: partitions (list of TopicPartition): assignment for this instance. Raises: IllegalStateError: if consumer has already called subscribe() Warning: It is not possible to use both manual partition assignment with assign() and group assignment with subscribe(). Note: Manual topic assignment through this method does not use the consumer's group management functionality. As such, there will be **no rebalance operation triggered** when group membership or cluster and topic metadata change. """ self._subscription.assign_from_user(partitions) self._client.set_topics([tp.topic for tp in partitions]) self._on_change_subscription() def assignment(self): """ Get the set of partitions currently assigned to this consumer. If partitions were directly assigned using ``assign()``, then this will simply return the same partitions that were previously assigned. If topics were subscribed using ``subscribe()``, then this will give the set of topic partitions currently assigned to the consumer (which may be empty if the assignment hasn't happened yet or if the partitions are in the process of being reassigned). Returns: set: {TopicPartition, ...} """ return self._subscription.assigned_partitions() @asyncio.coroutine def stop(self): """ Close the consumer, while waiting for finilizers: * Commit last consumed message if autocommit enabled * Leave group if used Consumer Groups """ if self._closed: return log.debug("Closing the KafkaConsumer.") self._closed = True for task in list(self._pending_position_fetches): task.cancel() try: yield from task except asyncio.CancelledError: pass if self._coordinator: yield from self._coordinator.close() if self._fetcher: yield from self._fetcher.close() yield from self._client.close() log.debug("The KafkaConsumer has closed.") @asyncio.coroutine def commit(self, offsets=None): """ Commit offsets to Kafka. This commits offsets only to Kafka. The offsets committed using this API will be used on the first fetch after every rebalance and also on startup. As such, if you need to store offsets in anything other than Kafka, this API should not be used. Currently only supports kafka-topic offset storage (not zookeeper) When explicitly passing ``offsets`` use either offset of next record, or tuple of offset and metadata:: tp = TopicPartition(msg.topic, msg.partition) metadata = "Some utf-8 metadata" # Either await consumer.commit({tp: msg.offset + 1}) # Or position directly await consumer.commit({tp: (msg.offset + 1, metadata)}) .. note:: If you want `fire and forget` commit, like ``commit_async()`` in *kafka-python*, just run it in a task. Something like:: fut = loop.create_task(consumer.commit()) fut.add_done_callback(on_commit_done) Arguments: offsets (dict, optional): {TopicPartition: (offset, metadata)} dict to commit with the configured ``group_id``. Defaults to current consumed offsets for all subscribed partitions. Raises: IllegalOperation: If used with ``group_id == None`` ValueError: If offsets is of wrong format KafkaError: If commit failed on broker side. This could be due to invalid offset, too long metadata, authorization failure, etc. """ if self._group_id is None: raise IllegalOperation("Requires group_id") if offsets is None: offsets = self._subscription.all_consumed_offsets() else: # validate `offsets` structure if not offsets or not isinstance(offsets, dict): raise ValueError(offsets) formatted_offsets = {} for tp, offset_and_metadata in offsets.items(): if not isinstance(tp, TopicPartition): raise ValueError("Key should be TopicPartition instance") if isinstance(offset_and_metadata, int): offset, metadata = offset_and_metadata, "" else: try: offset, metadata = offset_and_metadata except Exception: raise ValueError(offsets) if not isinstance(metadata, str): raise ValueError("Metadata should be a string") formatted_offsets[tp] = OffsetAndMetadata(offset, metadata) offsets = formatted_offsets yield from self._coordinator.commit_offsets(offsets) @asyncio.coroutine def committed(self, partition): """ Get the last committed offset for the given partition. (whether the commit happened by this process or another). This offset will be used as the position for the consumer in the event of a failure. This call may block to do a remote call if the partition in question isn't assigned to this consumer or if the consumer hasn't yet initialized its cache of committed offsets. Arguments: partition (TopicPartition): the partition to check Returns: The last committed offset, or None if there was no prior commit. Raises: IllegalOperation: If used with ``group_id == None`` """ if self._group_id is None: raise IllegalOperation("Requires group_id") if self._subscription.is_assigned(partition): committed = self._subscription.assignment[partition].committed if committed is None: yield from self._coordinator.refresh_committed_offsets() committed = self._subscription.assignment[partition].committed else: commit_map = yield from self._coordinator.fetch_committed_offsets( [partition]) if partition in commit_map: committed = commit_map[partition].offset else: committed = None return committed @asyncio.coroutine def topics(self): """ Get all topics the user is authorized to view. Returns: set: topics """ cluster = yield from self._client.fetch_all_metadata() return cluster.topics() def partitions_for_topic(self, topic): """ Get metadata about the partitions for a given topic. This method will return `None` if Consumer does not already have metadata for this topic. Arguments: topic (str): topic to check Returns: set: partition ids """ return self._client.cluster.partitions_for_topic(topic) @asyncio.coroutine def position(self, partition): """ Get the offset of the *next record* that will be fetched (if a record with that offset exists on broker). Arguments: partition (TopicPartition): partition to check Returns: int: offset """ assert self._subscription.is_assigned(partition), \ 'Partition is not assigned' offset = self._subscription.assignment[partition].position if offset is None: yield from self._update_fetch_positions([partition]) offset = self._subscription.assignment[partition].position return offset def highwater(self, partition): """ Last known highwater offset for a partition. A highwater offset is the offset that will be assigned to the next message that is produced. It may be useful for calculating lag, by comparing with the reported position. Note that both position and highwater refer to the *next* offset – i.e., highwater offset is one greater than the newest available message. Highwater offsets are returned as part of ``FetchResponse``, so will not be available if messages for this partition were not requested yet. Arguments: partition (TopicPartition): partition to check Returns: int or None: offset if available """ assert self._subscription.is_assigned(partition), \ 'Partition is not assigned' return self._subscription.assignment[partition].highwater def seek(self, partition, offset): """ Manually specify the fetch offset for a TopicPartition. Overrides the fetch offsets that the consumer will use on the next ``getmany()``/``getone()`` call. If this API is invoked for the same partition more than once, the latest offset will be used on the next fetch. Note: You may lose data if this API is arbitrarily used in the middle of consumption to reset the fetch offsets. Use it either on rebalance listeners or after all pending messages are processed. Arguments: partition (TopicPartition): partition for seek operation offset (int): message offset in partition Raises: AssertionError: if offset is not an int >= 0; or if partition is not currently assigned. """ assert isinstance(offset, int) and offset >= 0, 'Offset must be >= 0' assert partition in self._subscription.assigned_partitions(), \ 'Unassigned partition' log.debug("Seeking to offset %s for partition %s", offset, partition) self._subscription.assignment[partition].seek(offset) @asyncio.coroutine def seek_to_beginning(self, *partitions): """ Seek to the oldest available offset for partitions. Arguments: *partitions: Optionally provide specific TopicPartitions, otherwise default to all assigned partitions. Raises: IllegalStateError: If any partition is not currently assigned TypeError: If partitions are not instances of TopicPartition .. versionadded:: 0.3.0 """ if not all([isinstance(p, TopicPartition) for p in partitions]): raise TypeError('partitions must be TopicPartition instances') yield from self._coordinator.ensure_partitions_assigned() if not partitions: partitions = self._subscription.assigned_partitions() assert partitions, 'No partitions are currently assigned' else: not_assigned = ( set(partitions) - self._subscription.assigned_partitions() ) if not_assigned: raise IllegalStateError( "Partitions {} are not assigned".format(not_assigned)) for tp in partitions: log.debug("Seeking to beginning of partition %s", tp) self._subscription.need_offset_reset( tp, OffsetResetStrategy.EARLIEST) yield from self._fetcher.update_fetch_positions(partitions) @asyncio.coroutine def seek_to_end(self, *partitions): """Seek to the most recent available offset for partitions. Arguments: *partitions: Optionally provide specific TopicPartitions, otherwise default to all assigned partitions. Raises: IllegalStateError: If any partition is not currently assigned TypeError: If partitions are not instances of TopicPartition .. versionadded:: 0.3.0 """ if not all([isinstance(p, TopicPartition) for p in partitions]): raise TypeError('partitions must be TopicPartition instances') yield from self._coordinator.ensure_partitions_assigned() if not partitions: partitions = self._subscription.assigned_partitions() assert partitions, 'No partitions are currently assigned' else: not_assigned = ( set(partitions) - self._subscription.assigned_partitions() ) if not_assigned: raise IllegalStateError( "Partitions {} are not assigned".format(not_assigned)) for tp in partitions: log.debug("Seeking to end of partition %s", tp) self._subscription.need_offset_reset( tp, OffsetResetStrategy.LATEST) yield from self._fetcher.update_fetch_positions(partitions) @asyncio.coroutine def seek_to_committed(self, *partitions): """ Seek to the committed offset for partitions. Arguments: *partitions: Optionally provide specific TopicPartitions, otherwise default to all assigned partitions. Raises: IllegalStateError: If any partition is not currently assigned IllegalOperation: If used with ``group_id == None`` .. versionchanged:: 0.3.0 Changed ``AssertionError`` to ``IllegalStateError`` in case of unassigned partition """ if not all([isinstance(p, TopicPartition) for p in partitions]): raise TypeError('partitions must be TopicPartition instances') yield from self._coordinator.ensure_partitions_assigned() if not partitions: partitions = self._subscription.assigned_partitions() assert partitions, 'No partitions are currently assigned' else: not_assigned = ( set(partitions) - self._subscription.assigned_partitions() ) if not_assigned: raise IllegalStateError( "Partitions {} are not assigned".format(not_assigned)) for tp in partitions: log.debug("Seeking to committed of partition %s", tp) offset = yield from self.committed(tp) if offset and offset > 0: self.seek(tp, offset) @asyncio.coroutine def offsets_for_times(self, timestamps): """ Look up the offsets for the given partitions by timestamp. The returned offset for each partition is the earliest offset whose timestamp is greater than or equal to the given timestamp in the corresponding partition. The consumer does not have to be assigned the partitions. If the message format version in a partition is before 0.10.0, i.e. the messages do not have timestamps, ``None`` will be returned for that partition. Note: This method may block indefinitely if the partition does not exist. Arguments: timestamps (dict): ``{TopicPartition: int}`` mapping from partition to the timestamp to look up. Unit should be milliseconds since beginning of the epoch (midnight Jan 1, 1970 (UTC)) Returns: dict: ``{TopicPartition: OffsetAndTimestamp}`` mapping from partition to the timestamp and offset of the first message with timestamp greater than or equal to the target timestamp. Raises: ValueError: If the target timestamp is negative UnsupportedVersionError: If the broker does not support looking up the offsets by timestamp. KafkaTimeoutError: If fetch failed in request_timeout_ms .. versionadded:: 0.3.0 """ if self._client.api_version <= (0, 10, 0): raise UnsupportedVersionError( "offsets_for_times API not supported for cluster version {}" .format(self._client.api_version)) for tp, ts in timestamps.items(): timestamps[tp] = int(ts) if ts < 0: raise ValueError( "The target time for partition {} is {}. The target time " "cannot be negative.".format(tp, ts)) offsets = yield from self._fetcher.get_offsets_by_times( timestamps, self._request_timeout_ms) return offsets @asyncio.coroutine def beginning_offsets(self, partitions): """ Get the first offset for the given partitions. This method does not change the current consumer position of the partitions. Note: This method may block indefinitely if the partition does not exist. Arguments: partitions (list): List of TopicPartition instances to fetch offsets for. Returns: dict: ``{TopicPartition: int}`` mapping of partition to earliest available offset. Raises: UnsupportedVersionError: If the broker does not support looking up the offsets by timestamp. KafkaTimeoutError: If fetch failed in request_timeout_ms. .. versionadded:: 0.3.0 """ if self._client.api_version <= (0, 10, 0): raise UnsupportedVersionError( "offsets_for_times API not supported for cluster version {}" .format(self._client.api_version)) offsets = yield from self._fetcher.beginning_offsets( partitions, self._request_timeout_ms) return offsets @asyncio.coroutine def end_offsets(self, partitions): """ Get the last offset for the given partitions. The last offset of a partition is the offset of the upcoming message, i.e. the offset of the last available message + 1. This method does not change the current consumer position of the partitions. Note: This method may block indefinitely if the partition does not exist. Arguments: partitions (list): List of TopicPartition instances to fetch offsets for. Returns: dict: ``{TopicPartition: int}`` mapping of partition to last available offset + 1. Raises: UnsupportedVersionError: If the broker does not support looking up the offsets by timestamp. KafkaTimeoutError: If fetch failed in request_timeout_ms .. versionadded:: 0.3.0 """ if self._client.api_version <= (0, 10, 0): raise UnsupportedVersionError( "offsets_for_times API not supported for cluster version {}" .format(self._client.api_version)) offsets = yield from self._fetcher.end_offsets( partitions, self._request_timeout_ms) return offsets def subscribe(self, topics=(), pattern=None, listener=None): """ Subscribe to a list of topics, or a topic regex pattern. Partitions will be dynamically assigned via a group coordinator. Topic subscriptions are not incremental: this list will replace the current assignment (if there is one). This method is incompatible with ``assign()``. Arguments: topics (list): List of topics for subscription. pattern (str): Pattern to match available topics. You must provide either topics or pattern, but not both. listener (ConsumerRebalanceListener): Optionally include listener callback, which will be called before and after each rebalance operation. As part of group management, the consumer will keep track of the list of consumers that belong to a particular group and will trigger a rebalance operation if one of the following events trigger: * Number of partitions change for any of the subscribed topics * Topic is created or deleted * An existing member of the consumer group dies * A new member is added to the consumer group When any of these events are triggered, the provided listener will be invoked first to indicate that the consumer's assignment has been revoked, and then again when the new assignment has been received. Note that this listener will immediately override any listener set in a previous call to subscribe. It is guaranteed, however, that the partitions revoked/assigned through this interface are from topics subscribed in this call. Raises: IllegalStateError: if called after previously calling assign() ValueError: if neither topics or pattern is provided or both are provided TypeError: if listener is not a ConsumerRebalanceListener """ if not (topics or pattern): raise ValueError( "You should provide either `topics` or `pattern`") if topics and pattern: raise ValueError( "You can't provide both `topics` and `pattern`") if pattern: try: re.compile(pattern) except re.error as err: raise ValueError( "{!r} is not a valid pattern: {}".format(pattern, err)) # SubscriptionState handles error checking self._subscription.subscribe(topics=topics, pattern=pattern, listener=listener) # There's a bug in subscription, that pattern is not unset if we change # from pattern to simple topic subscription if not pattern: self._subscription.subscribed_pattern = None # regex will need all topic metadata if pattern is not None: self._client.set_topics([]) log.debug("Subscribed to topic pattern: %s", pattern) else: self._client.set_topics(self._subscription.group_subscription()) log.debug("Subscribed to topic(s): %s", topics) def subscription(self): """ Get the current topic subscription. Returns: set: {topic, ...} """ return frozenset(self._subscription.subscription or []) def unsubscribe(self): """ Unsubscribe from all topics and clear all assigned partitions. """ self._subscription.unsubscribe() self._client.set_topics([]) log.debug( "Unsubscribed all topics or patterns and assigned partitions") @asyncio.coroutine def _update_fetch_positions(self, partitions): """ Set the fetch position to the committed position (if there is one) or reset it using the offset reset policy the user has configured. Arguments: partitions (List[TopicPartition]): The partitions that need updating fetch positions Raises: NoOffsetForPartitionError: If no offset is stored for a given partition and no offset reset policy is defined """ if self._group_id is not None: # refresh commits for all assigned partitions yield from self._coordinator.refresh_committed_offsets() # then do any offset lookups in case some positions are not known yield from self._fetcher.update_fetch_positions(partitions) def _on_change_subscription(self): """ This is `group rebalanced` signal handler used to update fetch positions of assigned partitions """ if self._closed: # pragma: no cover return # fetch positions if we have partitions we're subscribed # to that we don't know the offset for if not self._subscription.has_all_fetch_positions(): task = ensure_future( self._update_fetch_positions( self._subscription.missing_fetch_positions()), loop=self._loop ) self._pending_position_fetches.add(task) def on_done(fut, tasks=self._pending_position_fetches): tasks.discard(fut) try: fut.result() except Exception as err: # pragma: no cover log.error("Failed to update fetch positions: %r", err) task.add_done_callback(on_done) @asyncio.coroutine def getone(self, *partitions): """ Get one message from Kafka. If no new messages prefetched, this method will wait for it. Arguments: partitions (List[TopicPartition]): Optional list of partitions to return from. If no partitions specified then returned message will be from any partition, which consumer is subscribed to. Returns: ConsumerRecord Will return instance of .. code:: python collections.namedtuple( "ConsumerRecord", ["topic", "partition", "offset", "key", "value"]) Example usage: .. code:: python while True: message = await consumer.getone() topic = message.topic partition = message.partition # Process message print(message.offset, message.key, message.value) """ assert all(map(lambda k: isinstance(k, TopicPartition), partitions)) if self._closed: raise ConsumerStoppedError() msg = yield from self._fetcher.next_record(partitions) return msg @asyncio.coroutine def getmany(self, *partitions, timeout_ms=0, max_records=None): """Get messages from assigned topics / partitions. Prefetched messages are returned in batches by topic-partition. If messages is not available in the prefetched buffer this method waits `timeout_ms` milliseconds. Arguments: partitions (List[TopicPartition]): The partitions that need fetching message. If no one partition specified then all subscribed partitions will be used timeout_ms (int, optional): milliseconds spent waiting if data is not available in the buffer. If 0, returns immediately with any records that are available currently in the buffer, else returns empty. Must not be negative. Default: 0 Returns: dict: topic to list of records since the last fetch for the subscribed list of topics and partitions Example usage: .. code:: python data = await consumer.getmany() for tp, messages in data.items(): topic = tp.topic partition = tp.partition for message in messages: # Process message print(message.offset, message.key, message.value) """ assert all(map(lambda k: isinstance(k, TopicPartition), partitions)) if self._closed: raise ConsumerStoppedError() if max_records is not None and ( not isinstance(max_records, int) or max_records < 1): raise ValueError("`max_records` must be a positive Integer") timeout = timeout_ms / 1000 records = yield from self._fetcher.fetched_records( partitions, timeout, max_records=max_records or self._max_poll_records) return records if PY_35: @asyncio.coroutine def __aiter__(self): if self._closed: raise ConsumerStoppedError() return self @asyncio.coroutine def __anext__(self): """Asyncio iterator interface for consumer Note: TopicAuthorizationFailedError and OffsetOutOfRangeError exceptions can be raised in iterator. All other KafkaError exceptions will be logged and not raised """ while True: try: return (yield from self.getone()) except ConsumerStoppedError: raise StopAsyncIteration # noqa: F821 except (TopicAuthorizationFailedError, OffsetOutOfRangeError) as err: raise err except KafkaError as err: log.error("error in consumer iterator: %s", err)
class AIOKafkaConsumer(object): """Consume records from a Kafka cluster. The consumer will transparently handle the failure of servers in the Kafka cluster, and adapt as topic-partitions are created or migrate between brokers. It also interacts with the assigned kafka Group Coordinator node to allow multiple consumers to load balance consumption of topics (requires kafka >= 0.9.0.0). Arguments: *topics (str): optional list of topics to subscribe to. If not set, call subscribe() or assign() before consuming records. bootstrap_servers: 'host[:port]' string (or list of 'host[:port]' strings) that the consumer should contact to bootstrap initial cluster metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to a Metadata API Request. Default port is 9092. If no servers are specified, will default to localhost:9092. client_id (str): a name for this client. This string is passed in each request to servers and can be used to identify specific server-side log entries that correspond to this client. Also submitted to GroupCoordinator for logging with respect to consumer group administration. Default: 'aiokafka-{version}' group_id (str or None): name of the consumer group to join for dynamic partition assignment (if enabled), and to use for fetching and committing offsets. If None, auto-partition assignment (via group coordinator) and offset commits are disabled. Default: None key_deserializer (callable): Any callable that takes a raw message key and returns a deserialized key. value_deserializer (callable, optional): Any callable that takes a raw message value and returns a deserialized value. fetch_min_bytes (int): Minimum amount of data the server should return for a fetch request, otherwise wait up to fetch_max_wait_ms for more data to accumulate. Default: 1. fetch_max_wait_ms (int): The maximum amount of time in milliseconds the server will block before answering the fetch request if there isn't sufficient data to immediately satisfy the requirement given by fetch_min_bytes. Default: 500. max_partition_fetch_bytes (int): The maximum amount of data per-partition the server will return. The maximum total memory used for a request = #partitions * max_partition_fetch_bytes. This size must be at least as large as the maximum message size the server allows or else it is possible for the producer to send messages larger than the consumer can fetch. If that happens, the consumer can get stuck trying to fetch a large message on a certain partition. Default: 1048576. request_timeout_ms (int): Client request timeout in milliseconds. Default: 40000. retry_backoff_ms (int): Milliseconds to backoff when retrying on errors. Default: 100. reconnect_backoff_ms (int): The amount of time in milliseconds to wait before attempting to reconnect to a given host. Default: 50. auto_offset_reset (str): A policy for resetting offsets on OffsetOutOfRange errors: 'earliest' will move to the oldest available message, 'latest' will move to the most recent. Any ofther value will raise the exception. Default: 'latest'. enable_auto_commit (bool): If true the consumer's offset will be periodically committed in the background. Default: True. auto_commit_interval_ms (int): milliseconds between automatic offset commits, if enable_auto_commit is True. Default: 5000. check_crcs (bool): Automatically check the CRC32 of the records consumed. This ensures no on-the-wire or on-disk corruption to the messages occurred. This check adds some overhead, so it may be disabled in cases seeking extreme performance. Default: True metadata_max_age_ms (int): The period of time in milliseconds after which we force a refresh of metadata even if we haven't seen any partition leadership changes to proactively discover any new brokers or partitions. Default: 300000 partition_assignment_strategy (list): List of objects to use to distribute partition ownership amongst consumer instances when group management is used. This preference is implicit in the order of the strategies in the list. When assignment strategy changes: to support a change to the assignment strategy, new versions must enable support both for the old assignment strategy and the new one. The coordinator will choose the old assignment strategy until all members have been updated. Then it will choose the new strategy. Default: [RoundRobinPartitionAssignor] heartbeat_interval_ms (int): The expected time in milliseconds between heartbeats to the consumer coordinator when using Kafka's group management feature. Heartbeats are used to ensure that the consumer's session stays active and to facilitate rebalancing when new consumers join or leave the group. The value must be set lower than session_timeout_ms, but typically should be set no higher than 1/3 of that value. It can be adjusted even lower to control the expected time for normal rebalances. Default: 3000 session_timeout_ms (int): The timeout used to detect failures when using Kafka's group managementment facilities. Default: 30000 consumer_timeout_ms (int): number of millisecond to poll available fetched messages. Default: 100 api_version (str): specify which kafka API version to use. AIOKafkaConsumer supports Kafka API versions >=0.9 only. If set to 'auto', will attempt to infer the broker version by probing various APIs. Default: auto Note: Many configuration parameters are taken from Java Client: https://kafka.apache.org/documentation.html#newconsumerconfigs """ def __init__(self, *topics, loop, bootstrap_servers='localhost', client_id='aiokafka-'+__version__, group_id=None, key_deserializer=None, value_deserializer=None, fetch_max_wait_ms=500, fetch_min_bytes=1, max_partition_fetch_bytes=1 * 1024 * 1024, request_timeout_ms=40 * 1000, retry_backoff_ms=100, reconnect_backoff_ms=50, auto_offset_reset='latest', enable_auto_commit=True, auto_commit_interval_ms=5000, check_crcs=True, metadata_max_age_ms=5 * 60 * 1000, partition_assignment_strategy=(RoundRobinPartitionAssignor,), heartbeat_interval_ms=3000, session_timeout_ms=30000, consumer_timeout_ms=100, api_version='auto'): if api_version not in ('auto', '0.9'): raise ValueError("Unsupported Kafka API version") self._client = AIOKafkaClient( loop=loop, bootstrap_servers=bootstrap_servers, client_id=client_id, metadata_max_age_ms=metadata_max_age_ms, request_timeout_ms=request_timeout_ms) self._api_version = api_version self._group_id = group_id self._heartbeat_interval_ms = heartbeat_interval_ms self._retry_backoff_ms = retry_backoff_ms self._enable_auto_commit = enable_auto_commit self._auto_commit_interval_ms = auto_commit_interval_ms self._partition_assignment_strategy = partition_assignment_strategy self._key_deserializer = key_deserializer self._value_deserializer = value_deserializer self._fetch_min_bytes = fetch_min_bytes self._fetch_max_wait_ms = fetch_max_wait_ms self._max_partition_fetch_bytes = max_partition_fetch_bytes self._consumer_timeout = consumer_timeout_ms / 1000 self._check_crcs = check_crcs self._subscription = SubscriptionState(auto_offset_reset) self._fetcher = None self._coordinator = None self._closed = False self._loop = loop self._topics = topics if topics: self._client.set_topics(topics) self._subscription.subscribe(topics=topics) @asyncio.coroutine def start(self): yield from self._client.bootstrap() # Check Broker Version if not set explicitly if self._api_version == 'auto': self._api_version = yield from self._client.check_version() # Convert api_version config to tuple for easy comparisons self._api_version = tuple( map(int, self._api_version.split('.'))) if self._api_version < (0, 9): raise ValueError( "Unsupported Kafka version: {}".format(self._api_version)) self._fetcher = Fetcher( self._client, self._subscription, loop=self._loop, key_deserializer=self._key_deserializer, value_deserializer=self._value_deserializer, fetch_min_bytes=self._fetch_min_bytes, fetch_max_wait_ms=self._fetch_max_wait_ms, max_partition_fetch_bytes=self._max_partition_fetch_bytes, check_crcs=self._check_crcs, fetcher_timeout=self._consumer_timeout) if self._group_id is not None: # using group coordinator for automatic partitions assignment self._coordinator = GroupCoordinator( self._client, self._subscription, loop=self._loop, group_id=self._group_id, heartbeat_interval_ms=self._heartbeat_interval_ms, retry_backoff_ms=self._retry_backoff_ms, enable_auto_commit=self._enable_auto_commit, auto_commit_interval_ms=self._auto_commit_interval_ms, assignors=self._partition_assignment_strategy) self._coordinator.on_group_rebalanced( self._on_change_subscription) yield from self._coordinator.ensure_active_group() elif self._subscription.needs_partition_assignment: # using manual partitions assignment by topic(s) yield from self._client.force_metadata_update() partitions = [] for topic in self._topics: p_ids = self.partitions_for_topic(topic) for p_id in p_ids: partitions.append(TopicPartition(topic, p_id)) self._subscription.unsubscribe() self._subscription.assign_from_user(partitions) yield from self._update_fetch_positions( self._subscription.missing_fetch_positions()) def assign(self, partitions): """Manually assign a list of TopicPartitions to this consumer. Arguments: partitions (list of TopicPartition): assignment for this instance. Raises: IllegalStateError: if consumer has already called subscribe() Warning: It is not possible to use both manual partition assignment with assign() and group assignment with subscribe(). Note: This interface does not support incremental assignment and will replace the previous assignment (if there was one). Note: Manual topic assignment through this method does not use the consumer's group management functionality. As such, there will be no rebalance operation triggered when group membership or cluster and topic metadata change. """ self._subscription.assign_from_user(partitions) self._on_change_subscription() self._client.set_topics([tp.topic for tp in partitions]) def assignment(self): """Get the TopicPartitions currently assigned to this consumer. If partitions were directly assigned using assign(), then this will simply return the same partitions that were previously assigned. If topics were subscribed using subscribe(), then this will give the set of topic partitions currently assigned to the consumer (which may be none if the assignment hasn't happened yet or if the partitions are in the process of being reassigned). Returns: set: {TopicPartition, ...} """ return self._subscription.assigned_partitions() @asyncio.coroutine def stop(self): """Close the consumer, waiting indefinitely for any needed cleanup.""" if self._closed: return log.debug("Closing the KafkaConsumer.") self._closed = True if self._coordinator: yield from self._coordinator.close() if self._fetcher: yield from self._fetcher.close() yield from self._client.close() log.debug("The KafkaConsumer has closed.") @asyncio.coroutine def commit(self, offsets=None): """Commit offsets to kafka, blocking until success or error This commits offsets only to Kafka. The offsets committed using this API will be used on the first fetch after every rebalance and also on startup. As such, if you needto store offsets in anything other than Kafka, this API should not be used. Blocks until either the commit succeeds or an unrecoverable error is encountered (in which case it is thrown to the caller). Currently only supports kafka-topic offset storage (not zookeeper) Arguments: offsets (dict, optional): {TopicPartition: OffsetAndMetadata} dict to commit with the configured group_id. Defaults to current consumed offsets for all subscribed partitions. """ assert self._group_id is not None, 'Requires group_id' if offsets is None: offsets = self._subscription.all_consumed_offsets() else: # validate `offsets` structure assert all(map(lambda k: isinstance(k, TopicPartition), offsets)) assert all(map(lambda v: isinstance(v, OffsetAndMetadata), offsets.values())) yield from self._coordinator.commit_offsets(offsets) @asyncio.coroutine def committed(self, partition): """Get the last committed offset for the given partition This offset will be used as the position for the consumer in the event of a failure. This call may block to do a remote call if the partition in question isn't assigned to this consumer or if the consumer hasn't yet initialized its cache of committed offsets. Arguments: partition (TopicPartition): the partition to check Returns: The last committed offset, or None if there was no prior commit. """ assert self._group_id is not None, 'Requires group_id' if self._subscription.is_assigned(partition): committed = self._subscription.assignment[partition].committed if committed is None: yield from self._coordinator.refresh_committed_offsets() committed = self._subscription.assignment[partition].committed else: commit_map = yield from self._coordinator.fetch_committed_offsets( [partition]) if partition in commit_map: committed = commit_map[partition].offset else: committed = None return committed @asyncio.coroutine def topics(self): """Get all topics the user is authorized to view. Returns: set: topics """ cluster = yield from self._client.fetch_all_metadata() return cluster.topics() def partitions_for_topic(self, topic): """Get metadata about the partitions for a given topic. Arguments: topic (str): topic to check Returns: set: partition ids """ return self._client.cluster.partitions_for_topic(topic) @asyncio.coroutine def position(self, partition): """Get the offset of the next record that will be fetched Arguments: partition (TopicPartition): partition to check Returns: int: offset """ assert self._subscription.is_assigned(partition), \ 'Partition is not assigned' offset = self._subscription.assignment[partition].position if offset is None: yield from self._update_fetch_positions(partition) offset = self._subscription.assignment[partition].position return offset def highwater(self, partition): """Last known highwater offset for a partition A highwater offset is the offset that will be assigned to the next message that is produced. It may be useful for calculating lag, by comparing with the reported position. Note that both position and highwater refer to the *next* offset -- i.e., highwater offset is one greater than the newest availabel message. Highwater offsets are returned in FetchResponse messages, so will not be available if not FetchRequests have been sent for this partition yet. Arguments: partition (TopicPartition): partition to check Returns: int or None: offset if available """ assert self._subscription.is_assigned(partition), \ 'Partition is not assigned' return self._subscription.assignment[partition].highwater def seek(self, partition, offset): """Manually specify the fetch offset for a TopicPartition. Overrides the fetch offsets that the consumer will use on the next poll(). If this API is invoked for the same partition more than once, the latest offset will be used on the next poll(). Note that you may lose data if this API is arbitrarily used in the middle of consumption, to reset the fetch offsets. Arguments: partition (TopicPartition): partition for seek operation offset (int): message offset in partition Raises: AssertionError: if offset is not an int >= 0; or if partition is not currently assigned. """ assert isinstance(offset, int) and offset >= 0, 'Offset must be >= 0' assert partition in self._subscription.assigned_partitions(), \ 'Unassigned partition' log.debug("Seeking to offset %s for partition %s", offset, partition) self._subscription.assignment[partition].seek(offset) @asyncio.coroutine def seek_to_committed(self, *partitions): """Seek to the committed offset for partitions Arguments: partitions: optionally provide specific TopicPartitions, otherwise default to all assigned partitions Raises: AssertionError: if any partition is not currently assigned, or if no partitions are assigned """ if not partitions: partitions = self._subscription.assigned_partitions() assert partitions, 'No partitions are currently assigned' else: for p in partitions: assert p in self._subscription.assigned_partitions(), \ 'Unassigned partition' for tp in partitions: log.debug("Seeking to committed of partition %s", tp) offset = yield from self.committed(tp) if offset and offset > 0: self.seek(tp, offset) def subscribe(self, topics=(), pattern=None, listener=None): """Subscribe to a list of topics, or a topic regex pattern Partitions will be dynamically assigned via a group coordinator. Topic subscriptions are not incremental: this list will replace the current assignment (if there is one). This method is incompatible with assign() Arguments: topics (list): List of topics for subscription. pattern (str): Pattern to match available topics. You must provide either topics or pattern, but not both. listener (ConsumerRebalanceListener): Optionally include listener callback, which will be called before and after each rebalance operation. As part of group management, the consumer will keep track of the list of consumers that belong to a particular group and will trigger a rebalance operation if one of the following events trigger: * Number of partitions change for any of the subscribed topics * Topic is created or deleted * An existing member of the consumer group dies * A new member is added to the consumer group When any of these events are triggered, the provided listener will be invoked first to indicate that the consumer's assignment has been revoked, and then again when the new assignment has been received. Note that this listener will immediately override any listener set in a previous call to subscribe. It is guaranteed, however, that the partitions revoked/assigned through this interface are from topics subscribed in this call. Raises: IllegalStateError: if called after previously calling assign() AssertionError: if neither topics or pattern is provided TypeError: if listener is not a ConsumerRebalanceListener """ # SubscriptionState handles error checking self._subscription.subscribe(topics=topics, pattern=pattern, listener=listener) # regex will need all topic metadata if pattern is not None: self._client.set_topics([]) log.debug("Subscribed to topic pattern: %s", pattern) else: self._client.set_topics(self._subscription.group_subscription()) log.debug("Subscribed to topic(s): %s", topics) def subscription(self): """Get the current topic subscription. Returns: set: {topic, ...} """ return self._subscription.subscription def unsubscribe(self): """Unsubscribe from all topics and clear all assigned partitions.""" self._subscription.unsubscribe() self._client.set_topics([]) log.debug( "Unsubscribed all topics or patterns and assigned partitions") @asyncio.coroutine def _update_fetch_positions(self, partitions): """ Set the fetch position to the committed position (if there is one) or reset it using the offset reset policy the user has configured. Arguments: partitions (List[TopicPartition]): The partitions that need updating fetch positions Raises: NoOffsetForPartitionError: If no offset is stored for a given partition and no offset reset policy is defined """ if self._group_id is not None: # refresh commits for all assigned partitions yield from self._coordinator.refresh_committed_offsets() # then do any offset lookups in case some positions are not known yield from self._fetcher.update_fetch_positions(partitions) def _on_change_subscription(self): """This is `group rebalanced` signal handler for update fetch positions of assigned partitions""" # fetch positions if we have partitions we're subscribed # to that we don't know the offset for if not self._subscription.has_all_fetch_positions(): ensure_future(self._update_fetch_positions( self._subscription.missing_fetch_positions()), loop=self._loop) @asyncio.coroutine def getone(self, *partitions): """ Get one message from Kafka If no new messages prefetched, this method will wait for it Arguments: partitions (List[TopicPartition]): Optional list of partitions to return from. If no partitions specified then returned message will be from any partition, which consumer is subscribed to. Returns: ConsumerRecord Will return instance of .. code:: python collections.namedtuple( "ConsumerRecord", ["topic", "partition", "offset", "key", "value"]) Example usage: .. code:: python while True: message = yield from consumer.getone() topic = message.topic partition = message.partition # Process message print(message.offset, message.key, message.value) """ assert all(map(lambda k: isinstance(k, TopicPartition), partitions)) msg = yield from self._fetcher.next_record(partitions) return msg @asyncio.coroutine def getmany(self, *partitions, timeout_ms=0): """Get messages from assigned topics / partitions. Prefetched messages are returned in batches by topic-partition. If messages is not available in the prefetched buffer this method waits `timeout_ms` milliseconds. Arguments: partitions (List[TopicPartition]): The partitions that need fetching message. If no one partition specified then all subscribed partitions will be used timeout_ms (int, optional): milliseconds spent waiting if data is not available in the buffer. If 0, returns immediately with any records that are available currently in the buffer, else returns empty. Must not be negative. Default: 0 Returns: dict: topic to list of records since the last fetch for the subscribed list of topics and partitions Example usage: .. code:: python data = yield from consumer.getmany() for tp, messages in data.items(): topic = tp.topic partition = tp.partition for message in messages: # Process message print(message.offset, message.key, message.value) """ assert all(map(lambda k: isinstance(k, TopicPartition), partitions)) timeout = timeout_ms / 1000 records = yield from self._fetcher.fetched_records(partitions, timeout) return records if PY_35: @asyncio.coroutine def __aiter__(self): return self @asyncio.coroutine def __anext__(self): return (yield from self.getone())
class KafkaConsumer(six.Iterator): """Consume records from a Kafka cluster. The consumer will transparently handle the failure of servers in the Kafka cluster, and adapt as topic-partitions are created or migrate between brokers. It also interacts with the assigned kafka Group Coordinator node to allow multiple consumers to load balance consumption of topics (requires kafka >= 0.9.0.0). Arguments: *topics (str): optional list of topics to subscribe to. If not set, call subscribe() or assign() before consuming records. Keyword Arguments: bootstrap_servers: 'host[:port]' string (or list of 'host[:port]' strings) that the consumer should contact to bootstrap initial cluster metadata. This does not have to be the full node list. It just needs to have at least one broker that will respond to a Metadata API Request. Default port is 9092. If no servers are specified, will default to localhost:9092. client_id (str): A name for this client. This string is passed in each request to servers and can be used to identify specific server-side log entries that correspond to this client. Also submitted to GroupCoordinator for logging with respect to consumer group administration. Default: 'kafka-python-{version}' group_id (str or None): The name of the consumer group to join for dynamic partition assignment (if enabled), and to use for fetching and committing offsets. If None, auto-partition assignment (via group coordinator) and offset commits are disabled. Default: 'kafka-python-default-group' key_deserializer (callable): Any callable that takes a raw message key and returns a deserialized key. value_deserializer (callable): Any callable that takes a raw message value and returns a deserialized value. fetch_min_bytes (int): Minimum amount of data the server should return for a fetch request, otherwise wait up to fetch_max_wait_ms for more data to accumulate. Default: 1. fetch_max_wait_ms (int): The maximum amount of time in milliseconds the server will block before answering the fetch request if there isn't sufficient data to immediately satisfy the requirement given by fetch_min_bytes. Default: 500. max_partition_fetch_bytes (int): The maximum amount of data per-partition the server will return. The maximum total memory used for a request = #partitions * max_partition_fetch_bytes. This size must be at least as large as the maximum message size the server allows or else it is possible for the producer to send messages larger than the consumer can fetch. If that happens, the consumer can get stuck trying to fetch a large message on a certain partition. Default: 1048576. request_timeout_ms (int): Client request timeout in milliseconds. Default: 40000. retry_backoff_ms (int): Milliseconds to backoff when retrying on errors. Default: 100. reconnect_backoff_ms (int): The amount of time in milliseconds to wait before attempting to reconnect to a given host. Default: 50. max_in_flight_requests_per_connection (int): Requests are pipelined to kafka brokers up to this number of maximum requests per broker connection. Default: 5. auto_offset_reset (str): A policy for resetting offsets on OffsetOutOfRange errors: 'earliest' will move to the oldest available message, 'latest' will move to the most recent. Any other value will raise the exception. Default: 'latest'. enable_auto_commit (bool): If True , the consumer's offset will be periodically committed in the background. Default: True. auto_commit_interval_ms (int): Number of milliseconds between automatic offset commits, if enable_auto_commit is True. Default: 5000. default_offset_commit_callback (callable): Called as callback(offsets, response) response will be either an Exception or an OffsetCommitResponse struct. This callback can be used to trigger custom actions when a commit request completes. check_crcs (bool): Automatically check the CRC32 of the records consumed. This ensures no on-the-wire or on-disk corruption to the messages occurred. This check adds some overhead, so it may be disabled in cases seeking extreme performance. Default: True metadata_max_age_ms (int): The period of time in milliseconds after which we force a refresh of metadata, even if we haven't seen any partition leadership changes to proactively discover any new brokers or partitions. Default: 300000 partition_assignment_strategy (list): List of objects to use to distribute partition ownership amongst consumer instances when group management is used. Default: [RangePartitionAssignor, RoundRobinPartitionAssignor] heartbeat_interval_ms (int): The expected time in milliseconds between heartbeats to the consumer coordinator when using Kafka's group management feature. Heartbeats are used to ensure that the consumer's session stays active and to facilitate rebalancing when new consumers join or leave the group. The value must be set lower than session_timeout_ms, but typically should be set no higher than 1/3 of that value. It can be adjusted even lower to control the expected time for normal rebalances. Default: 3000 session_timeout_ms (int): The timeout used to detect failures when using Kafka's group management facilities. Default: 30000 max_poll_records (int): The maximum number of records returned in a single call to poll(). Default: 500 receive_buffer_bytes (int): The size of the TCP receive buffer (SO_RCVBUF) to use when reading data. Default: None (relies on system defaults). The java client defaults to 32768. send_buffer_bytes (int): The size of the TCP send buffer (SO_SNDBUF) to use when sending data. Default: None (relies on system defaults). The java client defaults to 131072. socket_options (list): List of tuple-arguments to socket.setsockopt to apply to broker connection sockets. Default: [(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)] consumer_timeout_ms (int): number of milliseconds to block during message iteration before raising StopIteration (i.e., ending the iterator). Default block forever [float('inf')]. skip_double_compressed_messages (bool): A bug in KafkaProducer <= 1.2.4 caused some messages to be corrupted via double-compression. By default, the fetcher will return these messages as a compressed blob of bytes with a single offset, i.e. how the message was actually published to the cluster. If you prefer to have the fetcher automatically detect corrupt messages and skip them, set this option to True. Default: False. security_protocol (str): Protocol used to communicate with brokers. Valid values are: PLAINTEXT, SSL. Default: PLAINTEXT. ssl_context (ssl.SSLContext): Pre-configured SSLContext for wrapping socket connections. If provided, all other ssl_* configurations will be ignored. Default: None. ssl_check_hostname (bool): Flag to configure whether ssl handshake should verify that the certificate matches the brokers hostname. Default: True. ssl_cafile (str): Optional filename of ca file to use in certificate verification. Default: None. ssl_certfile (str): Optional filename of file in pem format containing the client certificate, as well as any ca certificates needed to establish the certificate's authenticity. Default: None. ssl_keyfile (str): Optional filename containing the client private key. Default: None. ssl_password (str): Optional password to be used when loading the certificate chain. Default: None. ssl_crlfile (str): Optional filename containing the CRL to check for certificate expiration. By default, no CRL check is done. When providing a file, only the leaf certificate will be checked against this CRL. The CRL can only be checked with Python 3.4+ or 2.7.9+. Default: None. api_version (tuple): Specify which kafka API version to use. If set to None, the client will attempt to infer the broker version by probing various APIs. Default: None Examples: (0, 9) enables full group coordination features with automatic partition assignment and rebalancing, (0, 8, 2) enables kafka-storage offset commits with manual partition assignment only, (0, 8, 1) enables zookeeper-storage offset commits with manual partition assignment only, (0, 8, 0) enables basic functionality but requires manual partition assignment and offset management. For a full list of supported versions, see KafkaClient.API_VERSIONS api_version_auto_timeout_ms (int): number of milliseconds to throw a timeout exception from the constructor when checking the broker api version. Only applies if api_version set to 'auto' metric_reporters (list): A list of classes to use as metrics reporters. Implementing the AbstractMetricsReporter interface allows plugging in classes that will be notified of new metric creation. Default: [] metrics_num_samples (int): The number of samples maintained to compute metrics. Default: 2 metrics_sample_window_ms (int): The maximum age in milliseconds of samples used to compute metrics. Default: 30000 selector (selectors.BaseSelector): Provide a specific selector implementation to use for I/O multiplexing. Default: selectors.DefaultSelector exclude_internal_topics (bool): Whether records from internal topics (such as offsets) should be exposed to the consumer. If set to True the only way to receive records from an internal topic is subscribing to it. Requires 0.10+ Default: True sasl_mechanism (str): String picking sasl mechanism when security_protocol is SASL_PLAINTEXT or SASL_SSL. Currently only PLAIN is supported. Default: None sasl_plain_username (str): Username for sasl PLAIN authentication. Default: None sasl_plain_password (str): Password for sasl PLAIN authentication. Default: None Note: Configuration parameters are described in more detail at https://kafka.apache.org/0100/configuration.html#newconsumerconfigs """ DEFAULT_CONFIG = { 'bootstrap_servers': 'localhost', 'client_id': 'kafka-python-' + __version__, 'group_id': 'kafka-python-default-group', 'key_deserializer': None, 'value_deserializer': None, 'fetch_max_wait_ms': 500, 'fetch_min_bytes': 1, 'max_partition_fetch_bytes': 1 * 1024 * 1024, 'request_timeout_ms': 40 * 1000, 'retry_backoff_ms': 100, 'reconnect_backoff_ms': 50, 'max_in_flight_requests_per_connection': 5, 'auto_offset_reset': 'latest', 'enable_auto_commit': True, 'auto_commit_interval_ms': 5000, 'default_offset_commit_callback': lambda offsets, response: True, 'check_crcs': True, 'metadata_max_age_ms': 5 * 60 * 1000, 'partition_assignment_strategy': (RangePartitionAssignor, RoundRobinPartitionAssignor), 'heartbeat_interval_ms': 3000, 'session_timeout_ms': 30000, 'max_poll_records': 500, 'receive_buffer_bytes': None, 'send_buffer_bytes': None, 'socket_options': [(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1)], 'consumer_timeout_ms': float('inf'), 'skip_double_compressed_messages': False, 'security_protocol': 'PLAINTEXT', 'ssl_context': None, 'ssl_check_hostname': True, 'ssl_cafile': None, 'ssl_certfile': None, 'ssl_keyfile': None, 'ssl_crlfile': None, 'ssl_password': None, 'api_version': None, 'api_version_auto_timeout_ms': 2000, 'connections_max_idle_ms': 9 * 60 * 1000, # Not implemented yet 'metric_reporters': [], 'metrics_num_samples': 2, 'metrics_sample_window_ms': 30000, 'metric_group_prefix': 'consumer', 'selector': selectors.DefaultSelector, 'exclude_internal_topics': True, 'sasl_mechanism': None, 'sasl_plain_username': None, 'sasl_plain_password': None, } def __init__(self, *topics, **configs): self.config = copy.copy(self.DEFAULT_CONFIG) for key in self.config: if key in configs: self.config[key] = configs.pop(key) # Only check for extra config keys in top-level class assert not configs, 'Unrecognized configs: %s' % configs deprecated = {'smallest': 'earliest', 'largest': 'latest'} if self.config['auto_offset_reset'] in deprecated: new_config = deprecated[self.config['auto_offset_reset']] log.warning('use auto_offset_reset=%s (%s is deprecated)', new_config, self.config['auto_offset_reset']) self.config['auto_offset_reset'] = new_config metrics_tags = {'client-id': self.config['client_id']} metric_config = MetricConfig(samples=self.config['metrics_num_samples'], time_window_ms=self.config['metrics_sample_window_ms'], tags=metrics_tags) reporters = [reporter() for reporter in self.config['metric_reporters']] self._metrics = Metrics(metric_config, reporters) # TODO _metrics likely needs to be passed to KafkaClient, etc. # api_version was previously a str. Accept old format for now if isinstance(self.config['api_version'], str): str_version = self.config['api_version'] if str_version == 'auto': self.config['api_version'] = None else: self.config['api_version'] = tuple(map(int, str_version.split('.'))) log.warning('use api_version=%s [tuple] -- "%s" as str is deprecated', str(self.config['api_version']), str_version) self._client = KafkaClient(metrics=self._metrics, **self.config) # Get auto-discovered version from client if necessary if self.config['api_version'] is None: self.config['api_version'] = self._client.config['api_version'] self._subscription = SubscriptionState(self.config['auto_offset_reset']) self._fetcher = Fetcher( self._client, self._subscription, self._metrics, **self.config) self._coordinator = ConsumerCoordinator( self._client, self._subscription, self._metrics, assignors=self.config['partition_assignment_strategy'], **self.config) self._closed = False self._iterator = None self._consumer_timeout = float('inf') if topics: self._subscription.subscribe(topics=topics) self._client.set_topics(topics) def assign(self, partitions): """Manually assign a list of TopicPartitions to this consumer. Arguments: partitions (list of TopicPartition): Assignment for this instance. Raises: IllegalStateError: If consumer has already called subscribe() Warning: It is not possible to use both manual partition assignment with assign() and group assignment with subscribe(). Note: This interface does not support incremental assignment and will replace the previous assignment (if there was one). Note: Manual topic assignment through this method does not use the consumer's group management functionality. As such, there will be no rebalance operation triggered when group membership or cluster and topic metadata change. """ self._subscription.assign_from_user(partitions) self._client.set_topics([tp.topic for tp in partitions]) def assignment(self): """Get the TopicPartitions currently assigned to this consumer. If partitions were directly assigned using assign(), then this will simply return the same partitions that were previously assigned. If topics were subscribed using subscribe(), then this will give the set of topic partitions currently assigned to the consumer (which may be None if the assignment hasn't happened yet, or if the partitions are in the process of being reassigned). Returns: set: {TopicPartition, ...} """ return self._subscription.assigned_partitions() def close(self): """Close the consumer, waiting indefinitely for any needed cleanup.""" if self._closed: return log.debug("Closing the KafkaConsumer.") self._closed = True self._coordinator.close() self._metrics.close() self._client.close() try: self.config['key_deserializer'].close() except AttributeError: pass try: self.config['value_deserializer'].close() except AttributeError: pass log.debug("The KafkaConsumer has closed.") def commit_async(self, offsets=None, callback=None): """Commit offsets to kafka asynchronously, optionally firing callback. This commits offsets only to Kafka. The offsets committed using this API will be used on the first fetch after every rebalance and also on startup. As such, if you need to store offsets in anything other than Kafka, this API should not be used. To avoid re-processing the last message read if a consumer is restarted, the committed offset should be the next message your application should consume, i.e.: last_offset + 1. This is an asynchronous call and will not block. Any errors encountered are either passed to the callback (if provided) or discarded. Arguments: offsets (dict, optional): {TopicPartition: OffsetAndMetadata} dict to commit with the configured group_id. Defaults to currently consumed offsets for all subscribed partitions. callback (callable, optional): Called as callback(offsets, response) with response as either an Exception or an OffsetCommitResponse struct. This callback can be used to trigger custom actions when a commit request completes. Returns: kafka.future.Future """ assert self.config['api_version'] >= (0, 8, 1), 'Requires >= Kafka 0.8.1' assert self.config['group_id'] is not None, 'Requires group_id' if offsets is None: offsets = self._subscription.all_consumed_offsets() log.debug("Committing offsets: %s", offsets) future = self._coordinator.commit_offsets_async( offsets, callback=callback) return future def commit(self, offsets=None): """Commit offsets to kafka, blocking until success or error. This commits offsets only to Kafka. The offsets committed using this API will be used on the first fetch after every rebalance and also on startup. As such, if you need to store offsets in anything other than Kafka, this API should not be used. To avoid re-processing the last message read if a consumer is restarted, the committed offset should be the next message your application should consume, i.e.: last_offset + 1. Blocks until either the commit succeeds or an unrecoverable error is encountered (in which case it is thrown to the caller). Currently only supports kafka-topic offset storage (not zookeeper). Arguments: offsets (dict, optional): {TopicPartition: OffsetAndMetadata} dict to commit with the configured group_id. Defaults to currently consumed offsets for all subscribed partitions. """ assert self.config['api_version'] >= (0, 8, 1), 'Requires >= Kafka 0.8.1' assert self.config['group_id'] is not None, 'Requires group_id' if offsets is None: offsets = self._subscription.all_consumed_offsets() self._coordinator.commit_offsets_sync(offsets) def committed(self, partition): """Get the last committed offset for the given partition. This offset will be used as the position for the consumer in the event of a failure. This call may block to do a remote call if the partition in question isn't assigned to this consumer or if the consumer hasn't yet initialized its cache of committed offsets. Arguments: partition (TopicPartition): The partition to check. Returns: The last committed offset, or None if there was no prior commit. """ assert self.config['api_version'] >= (0, 8, 1), 'Requires >= Kafka 0.8.1' assert self.config['group_id'] is not None, 'Requires group_id' if not isinstance(partition, TopicPartition): raise TypeError('partition must be a TopicPartition namedtuple') if self._subscription.is_assigned(partition): committed = self._subscription.assignment[partition].committed if committed is None: self._coordinator.refresh_committed_offsets_if_needed() committed = self._subscription.assignment[partition].committed else: commit_map = self._coordinator.fetch_committed_offsets([partition]) if partition in commit_map: committed = commit_map[partition].offset else: committed = None return committed def topics(self): """Get all topics the user is authorized to view. Returns: set: topics """ cluster = self._client.cluster if self._client._metadata_refresh_in_progress and self._client._topics: future = cluster.request_update() self._client.poll(future=future) stash = cluster.need_all_topic_metadata cluster.need_all_topic_metadata = True future = cluster.request_update() self._client.poll(future=future) cluster.need_all_topic_metadata = stash return cluster.topics() def partitions_for_topic(self, topic): """Get metadata about the partitions for a given topic. Arguments: topic (str): Topic to check. Returns: set: Partition ids """ return self._client.cluster.partitions_for_topic(topic) def poll(self, timeout_ms=0, max_records=None): """Fetch data from assigned topics / partitions. Records are fetched and returned in batches by topic-partition. On each poll, consumer will try to use the last consumed offset as the starting offset and fetch sequentially. The last consumed offset can be manually set through seek(partition, offset) or automatically set as the last committed offset for the subscribed list of partitions. Incompatible with iterator interface -- use one or the other, not both. Arguments: timeout_ms (int, optional): Milliseconds spent waiting in poll if data is not available in the buffer. If 0, returns immediately with any records that are available currently in the buffer, else returns empty. Must not be negative. Default: 0 max_records (int, optional): The maximum number of records returned in a single call to :meth:`poll`. Default: Inherit value from max_poll_records. Returns: dict: Topic to list of records since the last fetch for the subscribed list of topics and partitions. """ assert timeout_ms >= 0, 'Timeout must not be negative' if max_records is None: max_records = self.config['max_poll_records'] # Poll for new data until the timeout expires start = time.time() remaining = timeout_ms while True: records = self._poll_once(remaining, max_records) if records: return records elapsed_ms = (time.time() - start) * 1000 remaining = timeout_ms - elapsed_ms if remaining <= 0: return {} def _poll_once(self, timeout_ms, max_records): """Do one round of polling. In addition to checking for new data, this does any needed heart-beating, auto-commits, and offset updates. Arguments: timeout_ms (int): The maximum time in milliseconds to block. Returns: dict: Map of topic to list of records (may be empty). """ if self._use_consumer_group(): self._coordinator.ensure_coordinator_known() self._coordinator.ensure_active_group() # 0.8.2 brokers support kafka-backed offset storage via group coordinator elif self.config['group_id'] is not None and self.config['api_version'] >= (0, 8, 2): self._coordinator.ensure_coordinator_known() # Fetch positions if we have partitions we're subscribed to that we # don't know the offset for if not self._subscription.has_all_fetch_positions(): self._update_fetch_positions(self._subscription.missing_fetch_positions()) # If data is available already, e.g. from a previous network client # poll() call to commit, then just return it immediately records, partial = self._fetcher.fetched_records(max_records) if records: # Before returning the fetched records, we can send off the # next round of fetches and avoid block waiting for their # responses to enable pipelining while the user is handling the # fetched records. if not partial: self._fetcher.send_fetches() return records # Send any new fetches (won't resend pending fetches) self._fetcher.send_fetches() self._client.poll(timeout_ms=timeout_ms, sleep=True) records, _ = self._fetcher.fetched_records(max_records) return records def position(self, partition): """Get the offset of the next record that will be fetched Arguments: partition (TopicPartition): Partition to check Returns: int: Offset """ if not isinstance(partition, TopicPartition): raise TypeError('partition must be a TopicPartition namedtuple') assert self._subscription.is_assigned(partition), 'Partition is not assigned' offset = self._subscription.assignment[partition].position if offset is None: self._update_fetch_positions([partition]) offset = self._subscription.assignment[partition].position return offset def highwater(self, partition): """Last known highwater offset for a partition. A highwater offset is the offset that will be assigned to the next message that is produced. It may be useful for calculating lag, by comparing with the reported position. Note that both position and highwater refer to the *next* offset -- i.e., highwater offset is one greater than the newest available message. Highwater offsets are returned in FetchResponse messages, so will not be available if no FetchRequests have been sent for this partition yet. Arguments: partition (TopicPartition): Partition to check Returns: int or None: Offset if available """ if not isinstance(partition, TopicPartition): raise TypeError('partition must be a TopicPartition namedtuple') assert self._subscription.is_assigned(partition), 'Partition is not assigned' return self._subscription.assignment[partition].highwater def pause(self, *partitions): """Suspend fetching from the requested partitions. Future calls to poll() will not return any records from these partitions until they have been resumed using resume(). Note that this method does not affect partition subscription. In particular, it does not cause a group rebalance when automatic assignment is used. Arguments: *partitions (TopicPartition): Partitions to pause. """ if not all([isinstance(p, TopicPartition) for p in partitions]): raise TypeError('partitions must be TopicPartition namedtuples') for partition in partitions: log.debug("Pausing partition %s", partition) self._subscription.pause(partition) def paused(self): """Get the partitions that were previously paused by a call to pause(). Returns: set: {partition (TopicPartition), ...} """ return self._subscription.paused_partitions() def resume(self, *partitions): """Resume fetching from the specified (paused) partitions. Arguments: *partitions (TopicPartition): Partitions to resume. """ if not all([isinstance(p, TopicPartition) for p in partitions]): raise TypeError('partitions must be TopicPartition namedtuples') for partition in partitions: log.debug("Resuming partition %s", partition) self._subscription.resume(partition) def seek(self, partition, offset): """Manually specify the fetch offset for a TopicPartition. Overrides the fetch offsets that the consumer will use on the next poll(). If this API is invoked for the same partition more than once, the latest offset will be used on the next poll(). Note that you may lose data if this API is arbitrarily used in the middle of consumption, to reset the fetch offsets. Arguments: partition (TopicPartition): Partition for seek operation offset (int): Message offset in partition Raises: AssertionError: If offset is not an int >= 0; or if partition is not currently assigned. """ if not isinstance(partition, TopicPartition): raise TypeError('partition must be a TopicPartition namedtuple') assert isinstance(offset, int) and offset >= 0, 'Offset must be >= 0' assert partition in self._subscription.assigned_partitions(), 'Unassigned partition' log.debug("Seeking to offset %s for partition %s", offset, partition) self._subscription.assignment[partition].seek(offset) def seek_to_beginning(self, *partitions): """Seek to the oldest available offset for partitions. Arguments: *partitions: Optionally provide specific TopicPartitions, otherwise default to all assigned partitions. Raises: AssertionError: If any partition is not currently assigned, or if no partitions are assigned. """ if not all([isinstance(p, TopicPartition) for p in partitions]): raise TypeError('partitions must be TopicPartition namedtuples') if not partitions: partitions = self._subscription.assigned_partitions() assert partitions, 'No partitions are currently assigned' else: for p in partitions: assert p in self._subscription.assigned_partitions(), 'Unassigned partition' for tp in partitions: log.debug("Seeking to beginning of partition %s", tp) self._subscription.need_offset_reset(tp, OffsetResetStrategy.EARLIEST) def seek_to_end(self, *partitions): """Seek to the most recent available offset for partitions. Arguments: *partitions: Optionally provide specific TopicPartitions, otherwise default to all assigned partitions. Raises: AssertionError: If any partition is not currently assigned, or if no partitions are assigned. """ if not all([isinstance(p, TopicPartition) for p in partitions]): raise TypeError('partitions must be TopicPartition namedtuples') if not partitions: partitions = self._subscription.assigned_partitions() assert partitions, 'No partitions are currently assigned' else: for p in partitions: assert p in self._subscription.assigned_partitions(), 'Unassigned partition' for tp in partitions: log.debug("Seeking to end of partition %s", tp) self._subscription.need_offset_reset(tp, OffsetResetStrategy.LATEST) def subscribe(self, topics=(), pattern=None, listener=None): """Subscribe to a list of topics, or a topic regex pattern. Partitions will be dynamically assigned via a group coordinator. Topic subscriptions are not incremental: this list will replace the current assignment (if there is one). This method is incompatible with assign(). Arguments: topics (list): List of topics for subscription. pattern (str): Pattern to match available topics. You must provide either topics or pattern, but not both. listener (ConsumerRebalanceListener): Optionally include listener callback, which will be called before and after each rebalance operation. As part of group management, the consumer will keep track of the list of consumers that belong to a particular group and will trigger a rebalance operation if one of the following events trigger: * Number of partitions change for any of the subscribed topics * Topic is created or deleted * An existing member of the consumer group dies * A new member is added to the consumer group When any of these events are triggered, the provided listener will be invoked first to indicate that the consumer's assignment has been revoked, and then again when the new assignment has been received. Note that this listener will immediately override any listener set in a previous call to subscribe. It is guaranteed, however, that the partitions revoked/assigned through this interface are from topics subscribed in this call. Raises: IllegalStateError: If called after previously calling assign(). AssertionError: If neither topics or pattern is provided. TypeError: If listener is not a ConsumerRebalanceListener. """ # SubscriptionState handles error checking self._subscription.subscribe(topics=topics, pattern=pattern, listener=listener) # Regex will need all topic metadata if pattern is not None: self._client.cluster.need_all_topic_metadata = True self._client.set_topics([]) self._client.cluster.request_update() log.debug("Subscribed to topic pattern: %s", pattern) else: self._client.cluster.need_all_topic_metadata = False self._client.set_topics(self._subscription.group_subscription()) log.debug("Subscribed to topic(s): %s", topics) def subscription(self): """Get the current topic subscription. Returns: set: {topic, ...} """ return self._subscription.subscription def unsubscribe(self): """Unsubscribe from all topics and clear all assigned partitions.""" self._subscription.unsubscribe() self._coordinator.close() self._client.cluster.need_all_topic_metadata = False self._client.set_topics([]) log.debug("Unsubscribed all topics or patterns and assigned partitions") def metrics(self, raw=False): """Warning: this is an unstable interface. It may change in future releases without warning""" if raw: return self._metrics.metrics metrics = {} for k, v in self._metrics.metrics.items(): if k.group not in metrics: metrics[k.group] = {} if k.name not in metrics[k.group]: metrics[k.group][k.name] = {} metrics[k.group][k.name] = v.value() return metrics def _use_consumer_group(self): """Return True iff this consumer can/should join a broker-coordinated group.""" if self.config['api_version'] < (0, 9): return False elif self.config['group_id'] is None: return False elif not self._subscription.partitions_auto_assigned(): return False return True def _update_fetch_positions(self, partitions): """Set the fetch position to the committed position (if there is one) or reset it using the offset reset policy the user has configured. Arguments: partitions (List[TopicPartition]): The partitions that need updating fetch positions. Raises: NoOffsetForPartitionError: If no offset is stored for a given partition and no offset reset policy is defined. """ if (self.config['api_version'] >= (0, 8, 1) and self.config['group_id'] is not None): # Refresh commits for all assigned partitions self._coordinator.refresh_committed_offsets_if_needed() # Then, do any offset lookups in case some positions are not known self._fetcher.update_fetch_positions(partitions) def _message_generator(self): assert self.assignment() or self.subscription() is not None, 'No topic subscription or manual partition assignment' while time.time() < self._consumer_timeout: if self._use_consumer_group(): self._coordinator.ensure_coordinator_known() self._coordinator.ensure_active_group() # 0.8.2 brokers support kafka-backed offset storage via group coordinator elif self.config['group_id'] is not None and self.config['api_version'] >= (0, 8, 2): self._coordinator.ensure_coordinator_known() # Fetch offsets for any subscribed partitions that we arent tracking yet if not self._subscription.has_all_fetch_positions(): partitions = self._subscription.missing_fetch_positions() self._update_fetch_positions(partitions) poll_ms = 1000 * (self._consumer_timeout - time.time()) if not self._fetcher.in_flight_fetches(): poll_ms = 0 self._client.poll(timeout_ms=poll_ms, sleep=True) # We need to make sure we at least keep up with scheduled tasks, # like heartbeats, auto-commits, and metadata refreshes timeout_at = self._next_timeout() # Because the consumer client poll does not sleep unless blocking on # network IO, we need to explicitly sleep when we know we are idle # because we haven't been assigned any partitions to fetch / consume if self._use_consumer_group() and not self.assignment(): sleep_time = max(timeout_at - time.time(), 0) if sleep_time > 0 and not self._client.in_flight_request_count(): log.debug('No partitions assigned; sleeping for %s', sleep_time) time.sleep(sleep_time) continue # Short-circuit the fetch iterator if we are already timed out # to avoid any unintentional interaction with fetcher setup if time.time() > timeout_at: continue for msg in self._fetcher: yield msg if time.time() > timeout_at: log.debug("internal iterator timeout - breaking for poll") break # An else block on a for loop only executes if there was no break # so this should only be called on a StopIteration from the fetcher # We assume that it is safe to init_fetches when fetcher is done # i.e., there are no more records stored internally else: self._fetcher.send_fetches() def _next_timeout(self): timeout = min(self._consumer_timeout, self._client._delayed_tasks.next_at() + time.time(), self._client.cluster.ttl() / 1000.0 + time.time()) # Although the delayed_tasks timeout above should cover processing # HeartbeatRequests, it is still possible that HeartbeatResponses # are left unprocessed during a long _fetcher iteration without # an intermediate poll(). And because tasks are responsible for # rescheduling themselves, an unprocessed response will prevent # the next heartbeat from being sent. This check should help # avoid that. if self._use_consumer_group(): heartbeat = time.time() + self._coordinator.heartbeat.ttl() timeout = min(timeout, heartbeat) return timeout def __iter__(self): # pylint: disable=non-iterator-returned return self def __next__(self): if not self._iterator: self._iterator = self._message_generator() self._set_consumer_timeout() try: return next(self._iterator) except StopIteration: self._iterator = None raise def _set_consumer_timeout(self): # consumer_timeout_ms can be used to stop iteration early if self.config['consumer_timeout_ms'] >= 0: self._consumer_timeout = time.time() + ( self.config['consumer_timeout_ms'] / 1000.0) # Old KafkaConsumer methods are deprecated def configure(self, **configs): raise NotImplementedError( 'deprecated -- initialize a new consumer') def set_topic_partitions(self, *topics): raise NotImplementedError( 'deprecated -- use subscribe() or assign()') def fetch_messages(self): raise NotImplementedError( 'deprecated -- use poll() or iterator interface') def get_partition_offsets(self, topic, partition, request_time_ms, max_num_offsets): raise NotImplementedError( 'deprecated -- send an OffsetRequest with KafkaClient') def offsets(self, group=None): raise NotImplementedError('deprecated -- use committed(partition)') def task_done(self, message): raise NotImplementedError( 'deprecated -- commit offsets manually if needed')