def train_model_for_bot(bot: str): """ loads bot data from mongo into individual files for training :param bot: bot id :return: model path """ processor = MongoProcessor() nlu = processor.load_nlu(bot) if not nlu.training_examples: raise AppException("Training data does not exists!") domain = processor.load_domain(bot) stories = processor.load_stories(bot) config = processor.load_config(bot) rules = processor.get_rules_for_training(bot) directory = Utility.write_training_data(nlu, domain, config, stories, rules) output = os.path.join(DEFAULT_MODELS_PATH, bot) model = train( domain=os.path.join(directory, DEFAULT_DOMAIN_PATH), config=os.path.join(directory, DEFAULT_CONFIG_PATH), training_files=os.path.join(directory, DEFAULT_DATA_PATH), output=output, ) Utility.delete_directory(directory) del processor del nlu del domain del stories del config return model
def test_write_training_data_with_rules(self): from kairon.data_processor.processor import MongoProcessor processor = MongoProcessor() training_data = processor.load_nlu("test_load_from_path_yml_training_files") story_graph = processor.load_stories("test_load_from_path_yml_training_files") domain = processor.load_domain("test_load_from_path_yml_training_files") config = processor.load_config("test_load_from_path_yml_training_files") http_action = processor.load_http_action("test_load_from_path_yml_training_files") rules = processor.get_rules_for_training("test_load_from_path_yml_training_files") training_data_path = Utility.write_training_data(training_data, domain, config, story_graph, rules, http_action) assert os.path.exists(training_data_path)
async def test_write_training_data(self): from kairon.data_processor.processor import MongoProcessor processor = MongoProcessor() await ( processor.save_from_path( "./tests/testing_data/yml_training_files", bot="test_load_from_path_yml_training_files", user="******" ) ) training_data = processor.load_nlu("test_load_from_path_yml_training_files") story_graph = processor.load_stories("test_load_from_path_yml_training_files") domain = processor.load_domain("test_load_from_path_yml_training_files") config = processor.load_config("test_load_from_path_yml_training_files") http_action = processor.load_http_action("test_load_from_path_yml_training_files") training_data_path = Utility.write_training_data(training_data, domain, config, story_graph, None, http_action) assert os.path.exists(training_data_path)
def train_model_for_bot(bot: str): """ loads bot data from mongo into individual files for training :param bot: bot id :return: model path """ processor = MongoProcessor() nlu = processor.load_nlu(bot) if not nlu.training_examples: raise AppException("Training data does not exists!") domain = processor.load_domain(bot) stories = processor.load_stories(bot) config = processor.load_config(bot) directory = Utility.save_files( nlu.nlu_as_markdown().encode(), domain.as_yaml().encode(), stories.as_story_string().encode(), yaml.dump(config).encode(), ) output = os.path.join(DEFAULT_MODELS_PATH, bot) model = train( domain=os.path.join(directory, DEFAULT_DOMAIN_PATH), config=os.path.join(directory, DEFAULT_CONFIG_PATH), training_files=os.path.join(directory, DEFAULT_DATA_PATH), output=output, ) Utility.delete_directory(directory) del processor del nlu del domain del stories del config return model