def test_log_pdf_1n_1d_del(self): mu = asarray([1], dtype=numpy.bool8) spread = .5 dist = AddDelSwapProposal(mu, spread) X = asarray([[0]], dtype=numpy.bool8) result = dist.log_pdf(X) expected = zeros(1) + numpy.nan
def test_log_pdf_returned_array_dimension_multiple_X_2d(self): n = 2 mu = asarray([0, 1], dtype=numpy.bool8) spread = .5 dist = AddDelSwapProposal(mu, spread) X = asarray([[1, 0], [0, 0]], dtype=numpy.bool8) self.assertEqual(dist.log_pdf(X).shape, (n, ))
def test_log_pdf_2n_2d(self): mu = asarray([0, 1], dtype=numpy.bool8) spread = .5 dist = AddDelSwapProposal(mu, spread) X = asarray([[1, 1], [0, 1]], dtype=numpy.bool8) result = dist.log_pdf(X) expected = zeros(2) + numpy.nan
def test_log_pdf_returned_array_dimension_1d_X(self): n = 1 mu = asarray([0], dtype=numpy.bool8) spread = .5 dist = AddDelSwapProposal(mu, spread) X = asarray([[0]], dtype=numpy.bool8) self.assertEqual(dist.log_pdf(X).shape, (n,))
def test_log_pdf_returned_array_dimension_multiple_X_2d(self): n = 2 mu = asarray([0, 1], dtype=numpy.bool8) spread = .5 dist = AddDelSwapProposal(mu, spread) X = asarray([[1, 0], [0, 0]], dtype=numpy.bool8) self.assertEqual(dist.log_pdf(X).shape, (n,))
def test_log_pdf_returned_array_dimension_1d_X(self): n = 1 mu = asarray([0], dtype=numpy.bool8) spread = .5 dist = AddDelSwapProposal(mu, spread) X = asarray([[0]], dtype=numpy.bool8) self.assertEqual(dist.log_pdf(X).shape, (n, ))
def test_sample_dim(self): n = 3 d = 2 mu = randint(0, 2, d).astype(numpy.bool8) spread = .5 dist = AddDelSwapProposal(mu, spread) s = dist.sample(n) self.assertEqual(s.samples.shape, (n, d))
def test_sample_many_no_checks(self): num_runs = 1 for _ in range(num_runs): n = randint(1, 10) d = 10 mu = randint(0, 2, d).astype(numpy.bool8) #print 'mu=' #print mu spread = rand() dist = AddDelSwapProposal(mu, spread) sample = dist.sample(n)
def test_contructor_correct_spread(self): mu = ones(2, dtype=numpy.bool8) spread = .5 dist = AddDelSwapProposal(mu, spread) self.assertEqual(spread, dist.spread)
def test_log_pdf_type(self): mu = asarray([0], dtype=numpy.bool8) spread = .5 dist = AddDelSwapProposal(mu, spread) X = asarray([[0]], dtype=numpy.bool8) self.assertEqual(type(dist.log_pdf(X)), numpy.ndarray)
def test_contructor_correct_mu(self): mu = ones(2, dtype=numpy.bool8) spread = .5 dist = AddDelSwapProposal(mu, spread) self.assertTrue(mu is dist.mu)
def test_sample_samples_dtype(self): mu = randint(0, 2, 10).astype(numpy.bool8) spread = .5 dist = AddDelSwapProposal(mu, spread) s = dist.sample(1) self.assertEqual(s.samples.dtype, numpy.bool8)
def test_sample_type(self): mu = randint(0, 2, 10).astype(numpy.bool8) spread = .5 dist = AddDelSwapProposal(mu, spread) s = dist.sample(1) self.assertTrue(isinstance(s, Sample))
def test_sample_wrong_n_sameller_zero(self): mu = randint(0, 2, 10).astype(numpy.bool8) spread = .5 dist = AddDelSwapProposal(mu, spread) self.assertRaises(ValueError, dist.sample, -1)
def test_log_pdf_wrong_dimension(self): d = 2 mu = randint(0, 2, d).astype(numpy.bool8) spread = .5 dist = AddDelSwapProposal(mu, spread) self.assertRaises(ValueError, dist.log_pdf, zeros((1, 3)))
def test_log_pdf_wrong_type_float(self): d = 2 mu = randint(0, 2, d).astype(numpy.bool8) spread = .5 dist = AddDelSwapProposal(mu, spread) self.assertRaises(TypeError, dist.log_pdf, float(1.))
def test_sample_wrong_n_type_none(self): mu = randint(0, 2, 10).astype(numpy.bool8) spread = .5 dist = AddDelSwapProposal(mu, spread) self.assertRaises(TypeError, dist.sample, None)