def make_model(): model = Sequential() model.add(Input(shape=input_shape)) model.add(Conv2D(32, kernel_size=(3, 3), padding='same')) model.add(ReLU()) model.add(Conv2D(32, kernel_size=(3, 3), padding='same')) model.add(ReLU()) model.add(Conv2D(32, kernel_size=(3, 3), padding='same')) model.add(ReLU()) model.add(Conv2D(32, kernel_size=(3, 3), padding='same')) model.add(ReLU()) model.add(Conv2D(32, kernel_size=(3, 3), padding='same')) model.add(ReLU()) model.add(Flatten()) model.add(Dense(2500, kernel_initializer='He')) model.add(ReLU()) model.add(Dense(1500, kernel_initializer='He')) model.add(ReLU()) model.add(Dense(10, kernel_initializer='He')) model.add(Softmax()) model.summary() model.compile(Adam(), 'categorical_crossentropy', 'accuracy') return model
def make_model(): model = Sequential() model.add(Input(shape=input_shape)) model.add(Conv2D(32, kernel_size=(3, 3), padding='same')) model.add(BN_LAYER()) model.add(ReLU()) model.add(Conv2D(32, kernel_size=(3, 3), padding='same')) model.add(BN_LAYER()) model.add(ReLU()) model.add(MaxPooling2D(2, 2, stride=2)) model.add(Conv2D(64, kernel_size=(3, 3), padding='same')) model.add(BN_LAYER()) model.add(ReLU()) model.add(Conv2D(64, kernel_size=(3, 3), padding='same')) model.add(BN_LAYER()) model.add(ReLU()) model.add(MaxPooling2D(2, 2, stride=2)) model.add(Flatten()) model.add(Dense(512, kernel_initializer='He')) model.add(BN_LAYER()) model.add(ReLU()) model.add(Dense(10, kernel_initializer='He')) model.add(Softmax()) model.summary() model.compile(Adam(), loss='categorical_crossentropy', metric='accuracy') return model
def make_model(): model = Sequential() model.add(Input(shape=input_shape)) model.add( Conv2D(16, kernel_size=3, strides=1, padding='same', kernel_regularizer=l2(1e-4))) model.add(BatchNormalization_v2()) model.add(ReLU()) add_residual_block(model, num_filters=16) add_residual_block(model, num_filters=16) add_residual_block(model, num_filters=16) add_residual_block(model, num_filters=32, strides=2, cnn_shortcut=True) add_residual_block(model, num_filters=32) add_residual_block(model, num_filters=32) add_residual_block(model, num_filters=64, strides=2, cnn_shortcut=True) add_residual_block(model, num_filters=64) add_residual_block(model, num_filters=64) model.add(AveragePooling2DAll()) model.add(Flatten()) model.add(Dense(10, kernel_initializer='He')) model.add(Softmax()) model.summary() model.compile(Adam(lr=0.001, decay=1e-4), 'categorical_crossentropy', 'accuracy') return model
def make_model(): model = Sequential() model.add(Input(shape=input_shape)) model.add(Dense(4096)) model.add(LeakyReLU(0.2)) model.add(Dense(2048)) model.add(LeakyReLU(0.2)) model.add(Dense(1024)) model.add(LeakyReLU(0.2)) model.add(Dense(512)) model.add(LeakyReLU(0.2)) model.add(Dense(256)) model.add(LeakyReLU(0.2)) model.add(Dense(10)) model.add(Softmax()) model.summary() model.compile(Momentum(), 'categorical_crossentropy', 'accuracy') return model
def make_model(): model = Sequential() model.add(Input(shape=input_shape)) model.add(Dense(4096)) model.add(ReLU()) model.add(Dense(4096)) model.add(ReLU()) model.add(Dense(4096)) model.add(ReLU()) model.add(Dense(4096)) model.add(ReLU()) model.add(Dense(4096)) model.add(ReLU()) model.add(Dense(10)) model.add(Softmax()) model.summary() model.compile(Adam(), 'categorical_crossentropy', 'accuracy') return model