예제 #1
0
def nnsed(population, neighbors, probability):
    g = nx.newman_watts_strogatz_graph(population, neighbors, probability)
    model = NNSED()
    model.fit(g)
    embedding = model.get_embedding()

    #print(embedding)

    memberships = model.get_memberships()
    #print(memberships)

    return [memberships]
예제 #2
0
def test_nnsed():
    """
    Test the NNSED procedure.
    """
    graph = nx.newman_watts_strogatz_graph(100, 5, 0.3)

    model = NNSED()

    model.fit(graph)
    memberships = model.get_memberships()

    indices = [k for k, v in memberships.items()].sort()
    nodes = [node for node in graph.nodes()].sort()

    assert graph.number_of_nodes() == len(memberships)
    assert indices == nodes

    embedding = model.get_embedding()

    assert embedding.shape[0] == graph.number_of_nodes()
    assert embedding.shape[1] == model.dimensions
예제 #3
0
model.fit(g)

embedding = model.get_embedding()

#-------------------
# GraphWave example
#-------------------

g = nx.newman_watts_strogatz_graph(100, 10, 0.02)

model = GraphWave()

model.fit(g)

embedding = model.get_embedding()

#---------------
# NNSED example
#---------------

g = nx.newman_watts_strogatz_graph(100, 10, 0.02)

model = NNSED()

model.fit(g)

embedding = model.get_embedding()

memberships = model.get_memberships()