예제 #1
0
파일: liner.py 프로젝트: anujkmrch/kchist
    def detect_vertical_lines(self, Mat_Binary):
        ''' Detect vertical lines present in the binary image '''
        kernel_length = Mat_Binary.shape[1]//80
        vertical_kernel = cv2.getStructuringElement(
            cv2.MORPH_RECT, (1, kernel_length))

        kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))

        Mat_Vertical = cv2.erode(
            Mat_Binary, vertical_kernel, iterations=3)
        KLogger.set_log('LINE_VERTICAL200', 'Detecting Vertical Lines')
        return Mat_Vertical
예제 #2
0
파일: liner.py 프로젝트: anujkmrch/kchist
    def detect_horizontal_lines(self, Mat_Binary):
        '''
            Detect Horizontal lines present in  the binary image
        '''
        kernel_length = Mat_Binary.shape[1]//80
        horizontal_kernel = cv2.getStructuringElement(
            cv2.MORPH_RECT, (kernel_length, 1))

        kernel = cv2.getStructuringElement(cv2.MORPH_RECT, (3, 3))

        Mat_Horizontal = cv2.erode(
            Mat_Binary, horizontal_kernel, iterations=3)
        KLogger.set_log('LINE_HORIZONTAL200', 'Detecting Horizontal Lines')
        return Mat_Horizontal
예제 #3
0
파일: liner.py 프로젝트: anujkmrch/kchist
    def detect_line_separation(self, Mat_Binary):
        '''
            detect line separation by space
        '''
        KLogger.set_log('DETECT_LINES200', 'Detecting Lines By Text Spacing')
        pts = cv2.findNonZero(Mat_Binary)
        rect = cv2.minAreaRect(pts)

        (cx, cy), (w, h), angle = rect

        # if w > h:
        #     w, h = h, w
        #     angle += 90

        # M = cv2.getRotationMatrix2D((cx, cy), angle, 1.0)
        # rotated = cv2.warpAffine(
        #     Mat_Binary, M, (Mat_Binary.shape[1], Mat_Binary.shape[0]))

        hist = cv2.reduce(Mat_Binary, 1, cv2.REDUCE_AVG).reshape(-1)

        th = 0

        H, W = Mat_Binary.shape[:2]
        uppers = [y for y in range(H-1) if hist[y] <= th and hist[y+1] > th]
        lowers = [y for y in range(H-1) if hist[y] > th and hist[y+1] <= th]

        # result = cv2.cvtColor(Mat_Binary, cv2.COLOR_GRAY2BGR)

        result = np.zeros((H, W), dtype=np.uint8)

        # for y in uppers:
        #     cv2.line(result, (0, y), (W, y), (0, 255, 0), 1)

        for y in lowers:
            cv2.line(result, (0, y), (W, y), (255, 0, 0), 1)

        # result = cv2.pyrUp(result)
        KLogger.set_log('RETURN_LINES200', 'Return Lines By Text Spacing')
        return result
예제 #4
0
파일: liner.py 프로젝트: anujkmrch/kchist
    def count_lines(self, Mat, vertical=True):
        ''' Return total number of lines '''
        if vertical:
            KLogger.set_log('COUNT_VERTICAL_LINES200',
                            'Counting vertical lines')
        else:
            KLogger.set_log('COUNT_HORIZONTAL_LINES200',
                            'Counting horizontal lines')

        lines = cv2.HoughLines(Mat, 1, np.pi/180, 0)
        # vertical_lines, horizontal_lines = [], []
        lines_counted = []

        for line in lines:
            for rho, theta in line:
                a = np.cos(theta)

                # Stores the value of sin(theta) in b
                b = np.sin(theta)

                x0 = a*rho
                y0 = b*rho

                # x1 stores the rounded off value of (rcos(theta)-1000sin(theta))
                x1 = int(x0 + 1000*(-b))

                # y1 stores the rounded off value of (rsin(theta)+1000cos(theta))
                y1 = int(y0 + 1000*(a))

                # x2 stores the rounded off value of (rcos(theta)+1000sin(theta))
                x2 = int(x0 - 1000*(-b))

                # y2 stores the rounded off value of (rsin(theta)-1000cos(theta))
                y2 = int(y0 - 1000*(a))

                if not vertical and b == 1:  # calculate the horizontal lines
                    # cv2.line(Mat, (x1, y1), (x2, y2),(255, 255, 255), 1, cv2.CV_AA)
                    lines_counted.append([x1, y1, x2, y2])

                if vertical and theta == 0:  # calculate the vertical lines only
                    # cv2.line(Mat, (x1, y1), (x2, y2),(255, 255, 255), 1, cv2.CV_AA)
                    lines_counted.append([x1, y1, x2, y2])
        KLogger.set_log('RETURNING_VERT_HORZ_COUNTED_LINES200',
                        'Returing vertical and horizontal lines')
        return lines_counted
예제 #5
0
 def get_mat_binary(self):
     ''' Method to get binary image '''
     KLogger.set_log('BINARY204', 'Getting Binary Mat')
     return self.Mat_Thresh
예제 #6
0
 def get_mat_rgb(self):
     ''' Method to get rgb image '''
     KLogger.set_log('RGB204', 'Getting RGB Mat')
     return self.Mat_Rgb
예제 #7
0
 def get_mat_gray(self):
     ''' Method to get gray image '''
     KLogger.set_log('Gray204', 'Getting Gray Mat')
     return self.Mat_Gray
예제 #8
0
 def set_mat_gray(self,  mat_gray):
     ''' Method to set gray image '''
     self.Mat_Gray = mat_gray
     KLogger.set_log('GRAY202', 'Setting GrayScale from method')
예제 #9
0
 def set_mat_binary(self, mat_binary):
     ''' Method to set rgb image '''
     self.Mat_Thresh = mat_binary
     KLogger.set_log('BINARY202', 'Setting Threshold/Binary from method')
예제 #10
0
 def set_mat_rgb(self, mat_rgb):
     ''' Method to set rgb image '''
     self.Mat_Rgb = mat_rgb
     KLogger.set_log('RGB202', 'Setting RGB from method')
예제 #11
0
 def convert_to_zero_and_one(self):
     ''' Method to create binary image into zero and one '''
     KLogger.set_log(
         'ZERO2ONE404', 'Not implemented')
예제 #12
0
 def image_thresholding(self, min_thresh, max_thresh, THRESH_CODE=cv2.THRESH_BINARY):
     self.Mat_Thresh = cv2.threshold(
         self.Mat_Gray, min_thresh, max_thresh, THRESH_CODE)[1]
     KLogger.set_log(
         'THRESH200', f'Thresholding from {min_thresh} to {max_thresh}')
예제 #13
0
 def convert_to_grayscale(self):
     ''' Convert an Image From RGB to GrayScale '''
     self.Mat_Gray = cv2.cvtColor(self.Mat_Rgb, cv2.COLOR_BGR2GRAY)
     KLogger.set_log('GRAY200', 'Converting RGB to Grayscale')
예제 #14
0
 def load_image(self, image_path):
     ''' Load image from the path into the Mat RGB '''
     self.Image_Path = image_path
     self.Mat_Rgb = cv2.imread(self.Image_Path, cv2.IMREAD_COLOR)
     KLogger.set_log('RGB200', 'Reading RGB')