예제 #1
0
    def _perform(self):
        """
        Returns an Argument() with the parameters that depends on this operation
        """
        self.logger.info("Creating master illumination correction")

        suffix = self.action.args.new_type.lower()
        insuff = self.action.args.stack_type.lower()

        stack_list = list(self.stack_list['filename'])

        if len(stack_list) <= 0:
            self.logger.warning("No flats found!")
            return self.action.args

        # get root for maps
        tab = self.context.proctab.search_proctab(
            frame=self.action.args.ccddata, target_type='ARCLAMP',
            target_group=self.action.args.groupid)
        if len(tab) <= 0:
            self.logger.error("Geometry not solved!")
            return self.action.args

        mroot = strip_fname(tab['filename'][-1])

        # Wavelength map image
        wmf = mroot + '_wavemap.fits'
        self.logger.info("Reading image: %s" % wmf)
        wavemap = kcwi_fits_reader(
            os.path.join(self.config.instrument.cwd, 'redux',
                         wmf))[0]

        # Slice map image
        slf = mroot + '_slicemap.fits'
        self.logger.info("Reading image: %s" % slf)
        slicemap = kcwi_fits_reader(os.path.join(
            self.config.instrument.cwd, 'redux',
                         slf))[0]

        # Position map image
        pof = mroot + '_posmap.fits'
        self.logger.info("Reading image: %s" % pof)
        posmap = kcwi_fits_reader(os.path.join(
            self.config.instrument.cwd, 'redux',
                         pof))[0]

        # Read in stacked flat image
        stname = strip_fname(stack_list[0]) + '_' + insuff + '.fits'

        self.logger.info("Reading image: %s" % stname)
        stacked = kcwi_fits_reader(os.path.join(
            self.config.instrument.cwd, 'redux',
                         stname))[0]

        # get type of flat
        internal = ('SFLAT' in stacked.header['IMTYPE'])
        twiflat = ('STWIF' in stacked.header['IMTYPE'])
        domeflat = ('SDOME' in stacked.header['IMTYPE'])

        if internal:
            self.logger.info("Internal Flat")
        elif twiflat:
            self.logger.info("Twilight Flat")
        elif domeflat:
            self.logger.info("Dome Flat")
        else:
            self.logger.error("Flat of Unknown Type!")
            return self.action.args

        # knots per pixel
        knotspp = self.config.instrument.KNOTSPP

        # get image size
        ny = stacked.header['NAXIS2']

        # get binning
        xbin = self.action.args.xbinsize

        # Parameters for fitting

        # vignetted slice position range
        fitl = int(4/xbin)
        fitr = int(24/xbin)

        # un-vignetted slice position range
        flatl = int(34/xbin)
        flatr = int(72/xbin)

        # flat fitting slice position range
        ffleft = int(10/xbin)
        ffright = int(70/xbin)
        nrefx = int(ffright - ffleft)

        buffer = 6.0/float(xbin)

        # reference slice
        refslice = 9
        allidx = np.arange(int(140/xbin))
        newflat = stacked.data.copy()

        # dichroic fraction
        try:
            dichroic_fraction = wavemap.header['DICHFRAC']
        except KeyError:
            dichroic_fraction = 1.

        # get reference slice data
        q = [i for i, v in enumerate(slicemap.data.flat) if v == refslice]
        # get wavelength limits
        waves = wavemap.data.compress((wavemap.data > 0.).flat)
        waves = [waves.min(), waves.max()]
        self.logger.info("Wavelength limits: %.1f - %1.f" % (waves[0],
                                                             waves[1]))

        # correct vignetting if we are using internal flats
        if internal:
            self.logger.info("Internal flats require vignetting correction")
            # get good region for fitting
            if self.action.args.camera == 0:    # Blue
                wmin = waves[0]
                wmax = min([waves[1], 5620.])
            elif self.action.args.camera == 1:  # Red
                wmin = max([waves[0], 5580.])
                wmax = waves[1]
            else:
                self.logger.warning("Camera keyword not defined")
                wmin = waves[0]
                wmax = waves[1]
            dw = (wmax - wmin) / 30.0
            wavemin = (wmin+wmax) / 2.0 - dw
            wavemax = (wmin+wmax) / 2.0 + dw
            self.logger.info("Using %.1f - %.1f A of slice %d" % (wavemin,
                                                                  wavemax,
                                                                  refslice))
            xflat = []
            yflat = []
            wflat = []
            qq = []
            for i in q:
                if wavemin < wavemap.data.flat[i] < wavemax:
                    xflat.append(posmap.data.flat[i])
                    yflat.append(stacked.data.flat[i])
                    wflat.append(wavemap.data.flat[i])
                    qq.append(i)
            # get un-vignetted portion
            qflat = [i for i, v in enumerate(xflat) if flatl <= v <= flatr]
            xflat = [xflat[i] for i in qflat]
            yflat = [yflat[i] for i in qflat]
            wflat = [wflat[i] for i in qflat]
            # sort on wavelength
            sw = np.argsort(wflat)
            ywflat = [yflat[i] for i in sw]
            wwflat = [wflat[i] for i in sw]
            ww0 = np.min(wwflat)
            # fit wavelength slope
            wavelinfit = np.polyfit(wwflat-ww0, ywflat, 2)
            wslfit = np.polyval(wavelinfit, wflat-ww0)
            # plot slope fit
            if self.config.instrument.plot_level >= 1:
                p = figure(title=self.action.args.plotlabel + ' WAVE SLOPE FIT',
                           x_axis_label='wave px',
                           y_axis_label='counts',
                           plot_width=self.config.instrument.plot_width,
                           plot_height=self.config.instrument.plot_height)
                p.circle(wwflat, ywflat, legend_label="Data")
                p.line(wflat, wslfit, line_color='red', line_width=3,
                       legend_label="Fit")
                bokeh_plot(p, self.context.bokeh_session)
                if self.config.instrument.plot_level >= 2:
                    input("Next? <cr>: ")
                else:
                    time.sleep(self.config.instrument.plot_pause)
            # take out slope
            yflat = yflat / wslfit
            # now sort on slice position
            ss = np.argsort(xflat)
            xflat = [xflat[i] for i in ss]
            yflat = [yflat[i] for i in ss]
            # fit un-vignetted slope
            resflat = np.polyfit(xflat, yflat, 1)

            # select the points we will fit for the vignetting
            # get reference region
            xfit = [posmap.data.flat[i] for i in qq]
            yfit = [stacked.data.flat[i] for i in qq]
            wflat = [wavemap.data.flat[i] for i in qq]
            # take out wavelength slope
            yfit = yfit / np.polyval(wavelinfit, wflat-ww0)

            # select the vignetted region
            qfit = [i for i, v in enumerate(xfit) if fitl <= v <= fitr]
            xfit = [xfit[i] for i in qfit]
            yfit = [yfit[i] for i in qfit]
            # sort on slice position
            s = np.argsort(xfit)
            xfit = [xfit[i] for i in s]
            yfit = [yfit[i] for i in s]
            # fit vignetted slope
            resfit = np.polyfit(xfit, yfit, 1)
            # corrected data
            ycdata = stacked.data.flat[qq] / \
                np.polyval(wavelinfit, wavemap.data.flat[qq]-ww0)
            ycmin = 0.5     # np.min(ycdata)
            ycmax = 1.25    # np.max(ycdata)
            # compute the intersection
            xinter = -(resflat[1] - resfit[1]) / (resflat[0] - resfit[0])
            # plot slice profile and fits
            if self.config.instrument.plot_level >= 1:
                p = figure(title=self.action.args.plotlabel + ' Vignetting',
                           x_axis_label='Slice Pos (px)',
                           y_axis_label='Ratio',
                           plot_width=self.config.instrument.plot_width,
                           plot_height=self.config.instrument.plot_height)
                p.circle(posmap.data.flat[qq], ycdata, legend_label='Data')
                p.line(allidx, resfit[1] + resfit[0]*allidx,
                       line_color='purple', legend_label='Vign.')
                p.line(allidx, resflat[1] + resflat[0]*allidx, line_color='red',
                       legend_label='UnVign.')
                p.line([fitl, fitl], [ycmin, ycmax], line_color='blue')
                p.line([fitr, fitr], [ycmin, ycmax], line_color='blue')
                p.line([flatl, flatl], [ycmin, ycmax], line_color='green')
                p.line([flatr, flatr], [ycmin, ycmax], line_color='green')
                p.line([xinter-buffer, xinter-buffer], [ycmin, ycmax],
                       line_color='black')
                p.line([xinter + buffer, xinter + buffer], [ycmin, ycmax],
                       line_color='black')
                p.line([xinter, xinter], [ycmin, ycmax], line_color='red')
                p.y_range = Range1d(ycmin, ycmax)
                bokeh_plot(p, self.context.bokeh_session)
                if self.config.instrument.plot_level >= 2:
                    input("Next? <cr>: ")
                else:
                    time.sleep(self.config.instrument.plot_pause)

            # figure out where the correction applies
            qcor = [i for i, v in enumerate(posmap.data.flat)
                    if 0 <= v <= (xinter-buffer)]
            # apply the correction!
            self.logger.info("Applying vignetting correction...")
            for i in qcor:
                newflat.flat[i] = (resflat[1]+resflat[0]*posmap.data.flat[i]) \
                                / (resfit[1]+resfit[0]*posmap.data.flat[i]) * \
                                stacked.data.flat[i]
            # now deal with the intermediate (buffer) region
            self.logger.info("Done, now handling buffer region")
            # get buffer points to fit in reference region
            qbff = [i for i in qq if (xinter-buffer) <=
                    posmap.data.flat[i] <= (xinter+buffer)]
            # get slice pos and data for buffer fitting
            xbuff = [posmap.data.flat[i] for i in qbff]
            ybuff = [stacked.data.flat[i] / np.polyval(wavelinfit,
                                                       wavemap.data.flat[i]-ww0)
                     for i in qbff]
            # sort on slice position
            ssp = np.argsort(xbuff)
            xbuff = [xbuff[i] for i in ssp]
            ybuff = [ybuff[i] for i in ssp]
            # fit buffer with low-order poly
            buffit = np.polyfit(xbuff, ybuff, 3)
            # plot buffer fit
            if self.config.instrument.plot_level >= 1:
                p = figure(title=self.action.args.plotlabel + ' Buffer Region',
                           x_axis_label='Slice Pos (px)',
                           y_axis_label='Ratio',
                           plot_width=self.config.instrument.plot_width,
                           plot_height=self.config.instrument.plot_height)
                p.circle(xbuff, ybuff)
                p.line(xbuff, np.polyval(buffit, xbuff), line_color='red')
                bokeh_plot(p, self.context.bokeh_session)
                if self.config.instrument.plot_level >= 2:
                    input("Next? <cr>: ")
                else:
                    time.sleep(self.config.instrument.plot_pause)
            # get all buffer points in image
            qbuf = [i for i, v in enumerate(posmap.data.flat)
                    if (xinter-buffer) <= v <= (xinter+buffer)]
            # apply buffer correction to all buffer points in newflat
            for i in qbuf:
                newflat.flat[i] = \
                    (resflat[1] + resflat[0] * posmap.data.flat[i]) / \
                    np.polyval(buffit, posmap.data.flat[i]) * newflat.flat[i]
            self.logger.info("Vignetting correction complete.")

        self.logger.info("Fitting master illumination")
        # now fit master flat
        # get reference slice points
        qref = [i for i in q if ffleft <= posmap.data.flat[i] <= ffright]
        xfr = wavemap.data.flat[qref]
        yfr = newflat.flat[qref]
        # sort on wavelength
        s = np.argsort(xfr)
        xfr = xfr[s]
        yfr = yfr[s]

        wavegood0 = wavemap.header['WAVGOOD0']
        wavegood1 = wavemap.header['WAVGOOD1']

        # correction for BM where we see a ledge
        if 'BM' in self.action.args.grating:
            ledge_wave = bm_ledge_position(self.action.args.cwave)

            self.logger.info("BM ledge calculated wavelength "
                             "for ref slice = %.2f (A)" % ledge_wave)
            if wavegood0 <= ledge_wave <= wavegood1:
                self.logger.info("BM grating requires correction")
                qledge = [i for i, v in enumerate(xfr)
                          if ledge_wave-25 <= v <= ledge_wave+25]
                xledge = [xfr[i] for i in qledge]
                yledge = [yfr[i] for i in qledge]
                s = np.argsort(xledge)
                xledge = [xledge[i] for i in s]
                yledge = [yledge[i] for i in s]
                win = boxcar(250)
                smyledge = sp.signal.convolve(yledge,
                                              win, mode='same') / sum(win)
                ylmax = np.max(yledge)
                ylmin = np.min(yledge)
                fpoints = np.arange(0, 100) / 100. * 50 + (ledge_wave-25)
                ledgefit, ledgemsk = Bspline.iterfit(np.asarray(xledge),
                                                     smyledge, fullbkpt=fpoints,
                                                     upper=1, lower=1)
                ylfit, _ = ledgefit.value(np.asarray(fpoints))
                deriv = -(np.roll(ylfit, 1) - np.roll(ylfit, -1)) / 2.0
                # trim edges
                trm = int(len(deriv)/5)
                deriv = deriv[trm:-trm]
                xvals = fpoints[trm:-trm]
                peaks, _ = find_peaks(deriv, height=100)
                if len(peaks) != 1:
                    self.logger.warning("Extra peak found!")
                    p = figure(title=self.action.args.plotlabel +
                               ' Ledge', x_axis_label='Wavelength (A)',
                               y_axis_label='Value',
                               plot_width=self.config.instrument.plot_width,
                               plot_height=self.config.instrument.plot_height)
                    p.circle(xledge, smyledge, fill_color='green')
                    p.line(fpoints, ylfit)
                    bokeh_plot(p, self.context.bokeh_session)
                    input("Next? <cr>: ")
                    p = figure(title=self.action.args.plotlabel +
                               ' Deriv', x_axis_label='px',
                               y_axis_label='Value',
                               plot_width=self.config.instrument.plot_width,
                               plot_height=self.config.instrument.plot_height)
                    xx = list(range(len(deriv)))
                    ylim = get_plot_lims(deriv)
                    p.circle(xx, deriv)
                    for pk in peaks:
                        p.line([pk, pk], ylim)
                    bokeh_plot(p, self.context.bokeh_session)
                    print("Please indicate the integer pixel value of the peak")
                    ipk = int(input("Peak? <int>: "))
                else:
                    ipk = peaks[0]
                apk = xvals[ipk]
                if self.config.instrument.plot_level >= 3:
                    p = figure(
                        title=self.action.args.plotlabel + ' Peak of ledge',
                        x_axis_label='Wave (A)',
                        y_axis_label='Value',
                        plot_width=self.config.instrument.plot_width,
                        plot_height=self.config.instrument.plot_height)
                    p.circle(xvals, deriv, legend_label='Data')
                    p.line([apk, apk], [-50, 200], line_color='red',
                           legend_label='Pk')
                    bokeh_plot(p, self.context.bokeh_session)
                    if self.config.instrument.plot_level >= 2:
                        input("Next? <cr>: ")
                    else:
                        time.sleep(self.config.instrument.plot_pause)
                xlow = apk - 3 - 5
                xhi = apk - 3
                zlow = apk + 3
                zhi = apk + 3 + 5
                qlow = [i for i, v in enumerate(fpoints) if xlow <= v <= xhi]
                xlf = np.asarray([fpoints[i] for i in qlow])
                ylf = np.asarray([ylfit[i] for i in qlow])
                lowfit = np.polyfit(xlf, ylf, 1)
                qhi = [i for i, v in enumerate(fpoints) if zlow <= v <= zhi]
                xlf = np.asarray([fpoints[i] for i in qhi])
                ylf = np.asarray([ylfit[i] for i in qhi])
                hifit = np.polyfit(xlf, ylf, 1)
                ratio = (hifit[1] + hifit[0] * apk) / \
                        (lowfit[1] + lowfit[0] * apk)
                self.logger.info("BM ledge ratio: %.3f" % ratio)
                # correct flat data
                qcorr = [i for i, v in enumerate(xfr) if v >= apk]
                for i in qcorr:
                    yfr[i] /= ratio
                # plot BM ledge
                if self.config.instrument.plot_level >= 1:
                    p = figure(
                        title=self.action.args.plotlabel + ' BM Ledge Region',
                        x_axis_label='Wave (A)',
                        y_axis_label='Value',
                        plot_width=self.config.instrument.plot_width,
                        plot_height=self.config.instrument.plot_height)
                    # Input data
                    p.circle(xledge, yledge, fill_color='blue',
                             legend_label='Data')
                    # correct input data
                    qcorrect = [i for i, v in enumerate(xledge) if v >= apk]
                    xplt = []
                    yplt = []
                    for i in qcorrect:
                        xplt.append(xledge[i])
                        yplt.append(yledge[i] / ratio)
                    p.circle(xplt, yplt, fill_color='orange',
                             legend_label='Corrected')
                    p.line(fpoints, ylfit, line_color='red', legend_label='Fit')
                    p.line([xlow, xlow], [ylmin, ylmax], line_color='blue')
                    p.line([xhi, xhi], [ylmin, ylmax], line_color='blue')
                    p.line([zlow, zlow], [ylmin, ylmax], line_color='black')
                    p.line([zhi, zhi], [ylmin, ylmax], line_color='black')
                    p.line(fpoints, lowfit[1] + lowfit[0] * fpoints,
                           line_color='purple')
                    p.line(fpoints, hifit[1] + hifit[0] * fpoints,
                           line_color='green')
                    p.line([apk, apk], [ylmin, ylmax], line_color='green',
                           legend_label='Pk')
                    p.y_range = Range1d(ylmin, ylmax)
                    p.legend.location = 'top_left'
                    bokeh_plot(p, self.context.bokeh_session)
                    if self.config.instrument.plot_level >= 2:
                        input("Next? <cr>: ")
                    else:
                        time.sleep(self.config.instrument.plot_pause)
        # END: handling BM grating ledge

        # if we are fitting a twilight flat, treat it like a sky image with a
        # larger number of knots
        if twiflat:
            knots = int(ny * knotspp)
        else:
            knots = 100
        self.logger.info("Using %d knots for bspline fit" % knots)

        # generate a fit from ref slice points
        bkpt = np.min(xfr) + np.arange(knots+1) * \
            (np.max(xfr) - np.min(xfr)) / knots
        sftr, _ = Bspline.iterfit(xfr[nrefx:-nrefx], yfr[nrefx:-nrefx],
                                  fullbkpt=bkpt)
        yfitr, _ = sftr.value(xfr)

        # generate a blue slice spectrum bspline fit
        blueslice = 12
        blueleft = 60 / xbin
        blueright = 80 / xbin
        qb = [i for i, v in enumerate(slicemap.data.flat) if v == blueslice]
        qblue = [i for i in qb if blueleft <= posmap.data.flat[i] <= blueright]
        xfb = wavemap.data.flat[qblue]
        yfb = newflat.flat[qblue]
        s = np.argsort(xfb)
        xfb = xfb[s]
        yfb = yfb[s]
        bkpt = np.min(xfb) + np.arange(knots+1) * \
            (np.max(xfb) - np.min(xfb)) / knots
        sftb, _ = Bspline.iterfit(xfb[nrefx:-nrefx], yfb[nrefx:-nrefx],
                                  fullbkpt=bkpt)
        yfitb, _ = sftb.value(xfb)

        # generate a red slice spectrum bspline fit
        redslice = 23
        redleft = 60 / xbin
        redright = 80 / xbin
        qr = [i for i, v in enumerate(slicemap.data.flat) if v == redslice]
        qred = [i for i in qr if redleft <= posmap.data.flat[i] <= redright]
        xfd = wavemap.data.flat[qred]
        yfd = newflat.flat[qred]
        s = np.argsort(xfd)
        xfd = xfd[s]
        yfd = yfd[s]
        bkpt = np.min(xfd) + np.arange(knots + 1) * \
            (np.max(xfd) - np.min(xfd)) / knots
        sftd, _ = Bspline.iterfit(xfd[nrefx:-nrefx], yfd[nrefx:-nrefx],
                                  fullbkpt=bkpt)
        yfitd, _ = sftd.value(xfd)

        # waves
        minwave = np.min(xfb)
        maxwave = np.max(xfd)
        # are we a twilight flat?
        if twiflat:
            nwaves = int(ny * knotspp)
        else:
            nwaves = 1000
        waves = minwave + (maxwave - minwave) * np.arange(nwaves+1) / nwaves
        if self.config.instrument.plot_level >= 1:
            # output filename stub
            rbfnam = "redblue_%05d_%s_%s_%s" % \
                      (self.action.args.ccddata.header['FRAMENO'],
                       self.action.args.illum, self.action.args.grating,
                       self.action.args.ifuname)
            if xbin == 1:
                stride = int(len(xfr) / 8000.)
                if stride <= 0:
                    stride = 1
            else:
                stride = 1
            xrplt = xfr[::stride]
            yrplt = yfitr[::stride]
            yrplt_d = yfr[::stride]
            xbplt = xfb[::stride]
            ybplt = yfitb[::stride]
            ybplt_d = yfb[::stride]
            xdplt = xfd[::stride]
            ydplt = yfitd[::stride]
            ydplt_d = yfd[::stride]
            p = figure(
                title=self.action.args.plotlabel + ' Blue/Red fits',
                x_axis_label='Wave (A)',
                y_axis_label='Flux (e-)',
                plot_width=self.config.instrument.plot_width,
                plot_height=self.config.instrument.plot_height)
            p.line(xrplt, yrplt, line_color='black', legend_label='Ref')
            p.circle(xrplt, yrplt_d, size=1, line_alpha=0., fill_color='black')
            p.line(xbplt, ybplt, line_color='blue', legend_label='Blue')
            p.circle(xbplt, ybplt_d, size=1, line_alpha=0., fill_color='blue')
            p.line(xdplt, ydplt, line_color='red', legend_label='Red')
            p.circle(xdplt, ydplt_d, size=1, line_alpha=0., fill_color='red')
            bokeh_plot(p, self.context.bokeh_session)
            if self.config.instrument.plot_level >= 2:
                input("Next? <cr>: ")
            else:
                time.sleep(self.config.instrument.plot_pause)
            save_plot(p, filename=rbfnam+'.png')

        wavebuffer = 0.1
        minrwave = np.min(xfr)
        maxrwave = np.max(xfr)
        wavebuffer2 = 0.05
        wlb0 = minrwave+(maxrwave-minrwave)*wavebuffer2
        wlb1 = minrwave+(maxrwave-minrwave)*wavebuffer
        wlr0 = minrwave+(maxrwave-minrwave)*(1.-wavebuffer)
        wlr1 = minrwave+(maxrwave-minrwave)*(1.-wavebuffer2)
        qbluefit = [i for i, v in enumerate(waves) if wlb0 < v < wlb1]
        qredfit = [i for i, v in enumerate(waves) if wlr0 < v < wlr1]

        nqb = len(qbluefit)
        nqr = len(qredfit)
        self.logger.info("Wavelength regions: blue = %.1f - %.1f, "
                         "red = %.1f - %.1f" % (wlb0, wlb1, wlr0, wlr1))
        self.logger.info("Fit points: blue = %d, red = %d" % (nqb, nqr))

        if nqb > 0:
            bluefit, _ = sftb.value(waves[qbluefit])
            refbluefit, _ = sftr.value(waves[qbluefit])
            blue_zero_cross = np.nanmin(bluefit) <= 0. or np.nanmin(
                refbluefit) <= 0.
            bluelinfit = np.polyfit(waves[qbluefit], refbluefit/bluefit, 1)
            bluelinfity = bluelinfit[1] + bluelinfit[0] * waves[qbluefit]
        else:
            bluefit = None
            blue_zero_cross = False
            refbluefit = None
            bluelinfit = None
            bluelinfity = None
        if nqr > 0:
            redfit, _ = sftd.value(waves[qredfit])
            refredfit, _ = sftr.value(waves[qredfit])
            red_zero_cross = np.nanmin(redfit) <= 0. or np.nanmin(
                refredfit) <= 0.
            redlinfit = np.polyfit(waves[qredfit], refredfit/redfit, 1)
            redlinfity = redlinfit[1] + redlinfit[0] * waves[qredfit]
        else:
            redfit = None
            red_zero_cross = False
            refredfit = None
            redlinfit = None
            redlinfity = None
        if blue_zero_cross:
            self.logger.info("Blue extension zero crossing detected")
        if red_zero_cross:
            self.logger.info("Red extension zero crossing detected")
        if self.config.instrument.plot_level >= 1:
            if nqb > 1:
                # plot blue fits
                p = figure(
                    title=self.action.args.plotlabel + ' Blue fits',
                    x_axis_label='Wave (A)',
                    y_axis_label='Flux (e-)',
                    plot_width=self.config.instrument.plot_width,
                    plot_height=self.config.instrument.plot_height)
                p.line(waves[qbluefit], refbluefit, line_color='black',
                       legend_label='Ref')
                p.circle(waves[qbluefit], refbluefit, fill_color='black')
                p.line(waves[qbluefit], bluefit, line_color='blue',
                       legend_label='Blue')
                p.circle(waves[qbluefit], bluefit, fill_color='blue')
                bokeh_plot(p, self.context.bokeh_session)
                if self.config.instrument.plot_level >= 2:
                    input("Next? <cr>: ")
                else:
                    time.sleep(self.config.instrument.plot_pause)
                # plot blue ratios
                p = figure(
                    title=self.action.args.plotlabel + ' Blue ratios',
                    x_axis_label='Wave (A)',
                    y_axis_label='Ratio',
                    plot_width=self.config.instrument.plot_width,
                    plot_height=self.config.instrument.plot_height)
                p.line(waves[qbluefit], refbluefit/bluefit, line_color='black',
                       legend_label='Ref')
                p.circle(waves[qbluefit], refbluefit/bluefit,
                         fill_color='black')
                p.line(waves[qbluefit], bluelinfity,
                       line_color='blue', legend_label='Blue')
                p.circle(waves[qbluefit], bluelinfity,
                         fill_color='blue')
                bokeh_plot(p, self.context.bokeh_session)
                if self.config.instrument.plot_level >= 2:
                    input("Next? <cr>: ")
                else:
                    time.sleep(self.config.instrument.plot_pause)
            if nqr > 1:
                # plot red fits
                p = figure(
                    title=self.action.args.plotlabel + ' Red fits',
                    x_axis_label='Wave (A)',
                    y_axis_label='Flux (e-)',
                    plot_width=self.config.instrument.plot_width,
                    plot_height=self.config.instrument.plot_height)
                p.line(waves[qredfit], refredfit, line_color='black',
                       legend_label='Ref')
                p.circle(waves[qredfit], refredfit, fill_color='black')
                p.line(waves[qredfit], redfit, line_color='red',
                       legend_label='Red')
                p.circle(waves[qredfit], redfit, fill_color='red')
                bokeh_plot(p, self.context.bokeh_session)
                if self.config.instrument.plot_level >= 2:
                    input("Next? <cr>: ")
                else:
                    time.sleep(self.config.instrument.plot_pause)
                # plot red ratios
                p = figure(
                    title=self.action.args.plotlabel + ' Red ratios',
                    x_axis_label='Wave (A)',
                    y_axis_label='Ratio',
                    plot_width=self.config.instrument.plot_width,
                    plot_height=self.config.instrument.plot_height)
                p.line(waves[qredfit], refredfit/redfit, line_color='black',
                       legend_label='Ref')
                p.circle(waves[qredfit], refredfit/redfit, fill_color='black')
                p.line(waves[qredfit], redlinfity,
                       line_color='red', legend_label='Red')
                p.circle(waves[qredfit], redlinfity, fill_color='red')
                bokeh_plot(p, self.context.bokeh_session)
                if self.config.instrument.plot_level >= 2:
                    input("Next? <cr>: ")
                else:
                    time.sleep(self.config.instrument.plot_pause)

        # at this point we are going to try to merge the points
        self.logger.info("Correcting points outside %.1f - %.1f A"
                         % (minrwave, maxrwave))
        qselblue = [i for i, v in enumerate(xfb) if v <= minrwave]
        qselred = [i for i, v in enumerate(xfd) if v >= maxrwave]
        nqsb = len(qselblue)
        nqsr = len(qselred)
        blue_all_tie = yfitr[0]
        red_all_tie = yfitr[-1]
        self.logger.info("Blue/Red ref tie values: %.3f, %.3f"
                         % (blue_all_tie, red_all_tie))

        if nqsb > 0:
            self.logger.info("Blue ext tie value: %.3f" % yfb[qselblue[-1]])
            if blue_zero_cross:
                blue_offset = yfb[qselblue[-1]] - blue_all_tie
                bluefluxes = [yfb[i] - blue_offset for i in qselblue]
                self.logger.info("Blue zero crossing, only applying offset")
            else:
                blue_offset = yfb[qselblue[-1]] * \
                              (bluelinfit[1]+bluelinfit[0]*xfb[qselblue[-1]]) \
                              - blue_all_tie
                bluefluxes = [yfb[i] * (bluelinfit[1]+bluelinfit[0]*xfb[i])
                              - blue_offset for i in qselblue]
                self.logger.info("Blue linear ratio fit scaling applied")
            self.logger.info("Blue offset of %.2f applied" % blue_offset)
        else:
            bluefluxes = None
        if nqsr > 0:
            self.logger.info("Red ext tie value: %.3f" % yfd[qselred[0]])
            if red_zero_cross:
                red_offset = yfd[qselred[0]] - red_all_tie
                redfluxes = [yfd[i] - red_offset for i in qselred]
                self.logger.info("Red zero crossing, only applying offset")
            else:
                red_offset = yfd[qselred[0]] * \
                             (redlinfit[1]+redlinfit[0]*xfd[qselred[0]]) \
                             - red_all_tie
                redfluxes = [yfd[i] * (redlinfit[1]+redlinfit[0]*xfd[i])
                             - red_offset for i in qselred]
                self.logger.info("Red linear ratio fit scaling applied")
            self.logger.info("Red offset of %.2f applied" % red_offset)
        else:
            redfluxes = None
        allx = xfr
        allfx = xfr[nrefx:-nrefx]
        ally = yfr[nrefx:-nrefx]
        if nqsb > 0:
            bluex = xfb[qselblue]
            allx = np.append(bluex, allx)
            allfx = np.append(bluex[nrefx:], allfx)
            ally = np.append(bluefluxes[nrefx:], ally)
        if nqsr > 0:
            redx = xfd[qselred]
            allx = np.append(allx, redx)
            allfx = np.append(allfx, redx[:-nrefx])
            ally = np.append(ally, redfluxes[:-nrefx])
        s = np.argsort(allx)
        allx = allx[s]
        s = np.argsort(allfx)
        allfx = allfx[s]
        ally = ally[s]

        bkpt = np.min(allx) + np.arange(knots+1) * \
            (np.max(allx) - np.min(allx)) / knots
        sftall, _ = Bspline.iterfit(allfx, ally, fullbkpt=bkpt)
        yfitall, _ = sftall.value(allx)

        if self.config.instrument.plot_level >= 1:
            # output filename stub
            fltfnam = "flat_%05d_%s_%s_%s" % \
                      (self.action.args.ccddata.header['FRAMENO'],
                       self.action.args.illum, self.action.args.grating,
                       self.action.args.ifuname)
            if xbin == 1:
                stride = int(len(allx) / 8000.)
            else:
                stride = 1
            xplt = allfx[::stride]
            yplt = ally[::stride]
            fxplt = allx[::stride]
            fplt = yfitall[::stride]
            yran = [np.nanmin(ally), np.nanmax(ally)]
            p = figure(
                title=self.action.args.plotlabel + ' Master Illumination',
                x_axis_label='Wave (A)',
                y_axis_label='Flux (e-)',
                plot_width=self.config.instrument.plot_width,
                plot_height=self.config.instrument.plot_height)
            p.circle(xplt, yplt, size=1, line_alpha=0., fill_color='black',
                     legend_label='Data')
            p.line(fxplt, fplt, line_color='red', legend_label='Fit',
                   line_width=2)
            p.line([minrwave, minrwave], yran, line_color='orange',
                   legend_label='Cor lim')
            p.line([maxrwave, maxrwave], yran, line_color='orange')
            p.legend.location = "top_left"
            bokeh_plot(p, self.context.bokeh_session)
            if self.config.instrument.plot_level >= 2:
                input("Next? <cr>: ")
            else:
                time.sleep(self.config.instrument.plot_pause)
            save_plot(p, filename=fltfnam+".png")

        # OK, Now we have extended to the full range... so... we are going to
        # make a ratio flat!
        comflat = np.zeros(newflat.shape, dtype=float)
        qz = [i for i, v in enumerate(wavemap.data.flat) if v >= 0]

        comvals = sftall.value(wavemap.data.flat[qz])

        comflat.flat[qz] = comvals
        ratio = np.zeros(newflat.shape, dtype=float)
        qzer = [i for i, v in enumerate(newflat.flat) if v != 0]
        ratio.flat[qzer] = comflat.flat[qzer] / newflat.flat[qzer]

        # trim negative points
        qq = [i for i, v in enumerate(ratio.flat) if v < 0]
        if len(qq) > 0:
            ratio.flat[qq] = 0.0

        # trim the high points near edges of slice
        qq = [i for i, v in enumerate(ratio.flat) if v >= 3. and
              (posmap.data.flat[i] <= 4/xbin or
               posmap.data.flat[i] >= 136/xbin)]
        if len(qq) > 0:
            ratio.flat[qq] = 0.0

        # don't correct low signal points
        qq = [i for i, v in enumerate(newflat.flat) if v < 30.]
        if len(qq) > 0:
            ratio.flat[qq] = 1.0

        # get master flat output name
        mfname = stack_list[0].split('.fits')[0] + '_' + suffix + '.fits'

        log_string = MakeMasterFlat.__module__
        stacked.header['IMTYPE'] = self.action.args.new_type
        stacked.header['HISTORY'] = log_string
        stacked.header['MASTFLAT'] = (True, 'master flat image?')
        stacked.header['WAVMAPF'] = wmf
        stacked.header['SLIMAPF'] = slf
        stacked.header['POSMAPF'] = pof

        # store flat in output frame
        stacked.data = ratio

        # output master flat
        kcwi_fits_writer(stacked, output_file=mfname,
                         output_dir=self.config.instrument.output_directory)
        self.context.proctab.update_proctab(frame=stacked, suffix=suffix,
                                            newtype=self.action.args.new_type,
                                            filename=self.action.args.name)
        self.context.proctab.write_proctab()

        self.logger.info(log_string)
        return self.action.args
    def _perform(self):
        """
        Returns an Argument() with the parameters that depends on this operation
        """
        method = 'average'
        suffix = self.action.args.new_type.lower()

        combine_list = list(self.combine_list['filename'])
        # get master bias output name
        # mbname = combine_list[-1].split('.fits')[0] + '_' + suffix + '.fits'
        mbname = master_bias_name(self.action.args.ccddata)

        stack = []
        stackf = []
        for bias in combine_list:
            stackf.append(bias)
            # using [0] drops the table
            stack.append(kcwi_fits_reader(bias)[0])

        stacked = ccdproc.combine(stack,
                                  method=method,
                                  sigma_clip=True,
                                  sigma_clip_low_thresh=None,
                                  sigma_clip_high_thresh=2.0)
        stacked.header['IMTYPE'] = self.action.args.new_type
        stacked.header['NSTACK'] = (len(combine_list),
                                    'number of images stacked')
        stacked.header['STCKMETH'] = (method, 'method used for stacking')
        for ii, fname in enumerate(stackf):
            fname_base = os.path.basename(fname)
            stacked.header['STACKF%d' % (ii + 1)] = (fname_base,
                                                     "stack input file")

        # for readnoise stats use 2nd and 3rd bias
        diff = stack[1].data.astype(np.float32) - \
            stack[2].data.astype(np.float32)
        namps = stack[1].header['NVIDINP']
        for ia in range(namps):
            # get gain
            gain = stacked.header['GAIN%d' % (ia + 1)]
            # get amp section
            sec, rfor = parse_imsec(stacked.header['DSEC%d' % (ia + 1)])
            noise = diff[sec[0]:(sec[1] + 1), sec[2]:(sec[3] + 1)]
            noise = np.reshape(noise, noise.shape[0]*noise.shape[1]) * \
                gain / 1.414
            # get stats on noise
            c, low, upp = sigmaclip(noise, low=3.5, high=3.5)
            bias_rn = c.std()
            self.logger.info("Amp%d read noise from bias in e-: %.3f" %
                             ((ia + 1), bias_rn))
            stacked.header['BIASRN%d' % (ia + 1)] = \
                (float("%.3f" % bias_rn), "RN in e- from bias")
            if self.config.instrument.plot_level >= 1:
                # output filename stub
                biasfnam = "bias_%05d_amp%d_rdnoise" % \
                          (self.action.args.ccddata.header['FRAMENO'], ia+1)
                plabel = '[ Img # %d' % self.action.args.ccddata.header[
                    'FRAMENO']
                plabel += ' (Bias)'
                plabel += ' %s' % self.action.args.ccddata.header['BINNING']
                plabel += ' %s' % self.action.args.ccddata.header['AMPMODE']
                plabel += ' %d' % self.action.args.ccddata.header['GAINMUL']
                plabel += ' %s' % ('fast' if self.action.args.ccddata.
                                   header['CCDMODE'] else 'slow')
                plabel += ' ] '
                hist, edges = np.histogram(noise,
                                           range=(low, upp),
                                           density=False,
                                           bins=50)
                x = np.linspace(low, upp, 500)
                pdf = np.max(hist) * np.exp(-x**2 / (2. * bias_rn**2))
                p = figure(title=plabel + 'BIAS NOISE amp %d = %.3f' %
                           (ia + 1, bias_rn),
                           x_axis_label='e-',
                           y_axis_label='N',
                           plot_width=self.config.instrument.plot_width,
                           plot_height=self.config.instrument.plot_height)
                p.quad(top=hist,
                       bottom=0,
                       left=edges[:-1],
                       right=edges[1:],
                       fill_color="navy",
                       line_color="white",
                       alpha=0.5)
                p.line(x,
                       pdf,
                       line_color="#ff8888",
                       line_width=4,
                       alpha=0.7,
                       legend_label="PDF")
                p.line([-bias_rn, -bias_rn], [0, np.max(hist)],
                       color='red',
                       legend_label="Sigma")
                p.line([bias_rn, bias_rn], [0, np.max(hist)], color='red')
                p.y_range.start = 0
                bokeh_plot(p, self.context.bokeh_session)
                if self.config.instrument.plot_level >= 2:
                    input("Next? <cr>: ")
                else:
                    time.sleep(self.config.instrument.plot_pause)
                save_plot(p, filename=biasfnam + ".png")

        log_string = MakeMasterBias.__module__
        stacked.header['HISTORY'] = log_string
        self.logger.info(log_string)

        kcwi_fits_writer(stacked,
                         output_file=mbname,
                         output_dir=self.config.instrument.output_directory)
        self.context.proctab.update_proctab(frame=stacked,
                                            suffix=suffix,
                                            newtype=self.action.args.new_type,
                                            filename=self.action.args.name)
        self.context.proctab.write_proctab()
        return Arguments(name=mbname)
    def _perform(self):
        self.logger.info("Tracing continuum bars")
        if self.config.instrument.plot_level >= 1:
            do_plot = True
        else:
            do_plot = False
        if len(self.action.args.middle_centers) < 1:
            self.logger.error("No bars found")
        elif not self.action.args.bar_avg:
            self.logger.error("No threshold for tracing")
        else:
            # initialize
            samp = int(80 / self.action.args.ybinsize)
            win = self.action.args.window
            bar_thresh = self.action.args.bar_avg
            self.logger.info("Tracing bars with threshold of %.1f" % bar_thresh)
            xi = []     # x input
            xo = []     # x output
            yi = []     # y input (and output)
            barid = []  # bar id number
            slid = []   # slice id number
            # loop over bars
            for barn, barx in enumerate(self.action.args.middle_centers):
                # nearest pixel to bar center
                barxi = int(barx + 0.5)
                self.logger.info("bar number %d is at %.3f" % (barn, barx))
                # middle row data
                xi.append(barx)
                xo.append(barx)
                yi.append(self.action.args.middle_row)
                barid.append(barn)
                slid.append(int(barn/5))
                # trace up
                samy = self.action.args.middle_row + samp
                done = False
                while samy < (self.action.args.ccddata.data.shape[0] - win) \
                        and not done:
                    ys = np.median(
                        self.action.args.ccddata.data[(samy - win):
                                                      (samy + win + 1),
                                                      (barxi - win):
                                                      (barxi + win + 1)],
                        axis=0)
                    ys = ys - np.nanmin(ys)
                    if np.nanmax(ys) > bar_thresh and np.nansum(ys) > 0:
                        xs = list(range(barxi - win, barxi + win + 1))
                        xc = np.nansum(xs * ys) / np.nansum(ys)
                        xi.append(xc)
                        xo.append(barx)
                        yi.append(samy)
                        barid.append(barn)
                        slid.append(int(barn/5))
                        barxi = int(xc)
                    else:
                        done = True
                    samy += samp
                # trace down
                # nearest pixel to bar center
                barxi = int(barx + 0.5)
                samy = self.action.args.middle_row - samp
                done = False
                while samy >= win and not done:
                    ys = np.median(
                        self.action.args.ccddata.data[(samy - win):
                                                      (samy + win + 1),
                                                      (barxi - win):
                                                      (barxi + win + 1)],
                        axis=0)
                    ys = ys - np.nanmin(ys)
                    if np.nanmax(ys) > bar_thresh and np.nansum(ys) > 0:
                        xs = list(range(barxi - win, barxi + win + 1))
                        xc = np.sum(xs * ys) / np.sum(ys)
                        xi.append(xc)
                        xo.append(barx)
                        yi.append(samy)
                        barid.append(barn)
                        slid.append(int(barn / 5))
                        barxi = int(xc)
                    else:
                        done = True
                    samy -= samp
            # end loop over bars
            # create source and destination coords
            yo = yi
            dst = np.column_stack((xi, yi))
            src = np.column_stack((xo, yo))
            if do_plot:
                # output filename stub
                trcfnam = "bars_%05d_%s_%s_%s" % \
                          (self.action.args.ccddata.header['FRAMENO'],
                           self.action.args.illum, self.action.args.grating,
                           self.action.args.ifuname)
                # plot them
                p = figure(title=self.action.args.plotlabel +
                           'SPATIAL CONTROL POINTS',
                           x_axis_label="CCD X (px)", y_axis_label="CCD Y (px)",
                           plot_width=self.config.instrument.plot_width,
                           plot_height=self.config.instrument.plot_height)
                p.scatter(xi, yi, marker='x', size=2, color='blue')
                p.scatter(self.action.args.middle_centers,
                          [self.action.args.middle_row]*120, color='red')
                bokeh_plot(p, self.context.bokeh_session)
                if self.config.instrument.plot_level >= 2:
                    input("Next? <cr>: ")
                else:
                    time.sleep(self.config.instrument.plot_pause)
                save_plot(p, filename=trcfnam+".png")
            trace = {
                'src': src,
                'dst': dst,
                'barid': barid,
                'slid': slid,
                'MIDROW': self.action.args.middle_row,
                'WINDOW': self.action.args.window,
                'REFDELX': self.action.args.reference_delta_x,
                'CBARSNO': self.action.args.contbar_image_number,
                'CBARSFL': self.action.args.contbar_image}

            # in this line we pass the trace information to an argument
            # instead of writing it to a table
            self.context.trace = trace
            ofname = strip_fname(self.action.args.contbar_image) + \
                "_trace.fits"
            write_table(table=[src, dst, barid, slid],
                        names=('src', 'dst', 'barid', 'slid'),
                        output_dir=os.path.join(
                            self.config.instrument.cwd,
                            self.config.instrument.output_directory),
                        output_name=ofname,
                        clobber=self.config.instrument.clobber,
                        comment=['Source and destination fiducial points',
                                 'Derived from KCWI continuum bars images',
                                 'For defining spatial transformation'],
                        keywords={'MIDROW': (self.action.args.middle_row,
                                             "Middle Row of image"),
                                  'WINDOW': (self.action.args.window,
                                             "Window for bar"),
                                  'REFDELX': (
                                      self.action.args.reference_delta_x,
                                      "Reference bar sep in px"),
                                  'CBARSNO': (
                                      self.action.args.contbar_image_number,
                                      "Cont. bars image number"),
                                  'CBARSFL': (self.action.args.contbar_image,
                                              "Cont. bars image")})

            if self.config.instrument.saveintims:
                from kcwidrp.primitives.kcwi_file_primitives import \
                    kcwi_fits_writer
                from skimage import transform as tf
                # fit transform
                self.logger.info("Fitting spatial control points")
                tform = tf.estimate_transform('polynomial', src, dst, order=3)
                self.logger.info("Transforming bars image")
                warped = tf.warp(self.action.args.ccddata.data, tform)
                # write out warped image
                self.action.args.ccddata.data = warped
                kcwi_fits_writer(
                    self.action.args.ccddata, output_file=self.action.args.name,
                    output_dir=self.config.instrument.output_directory,
                    suffix='warped')
                self.logger.info("Transformed bars produced")

            log_string = TraceBars.__module__
            self.action.args.ccddata.header['HISTORY'] = log_string
            self.logger.info(log_string)

            return self.action.args
예제 #4
0
    def _perform(self):
        """Solve individual arc bar spectra for wavelength"""
        self.logger.info("Solving individual arc spectra")
        # plot control booleans
        master_inter = (self.config.instrument.plot_level >= 2)
        do_inter = (self.config.instrument.plot_level >= 3)
        # output control
        verbose = (self.config.instrument.verbose > 1)

        # Bar statistics
        bar_sig = []
        bar_nls = []
        # set thresh for finding lines
        hgt = 50.
        self.logger.info("line thresh = %.2f" % hgt)
        # get relevant part of atlas spectrum
        atwave = self.action.args.refwave[self.action.args.atminrow:self.
                                          action.args.atmaxrow]
        atspec = self.action.args.reflux[self.action.args.atminrow:self.action.
                                         args.atmaxrow]
        # convert list into ndarray
        at_wave = np.asarray(self.action.args.at_wave)
        at_flux = np.asarray(self.action.args.at_flux)
        # get x values starting at zero pixels
        self.action.args.xsvals = np.arange(
            0, len(self.context.arcs[self.config.instrument.REFBAR]))
        # loop over arcs and generate a wavelength solution for each
        next_bar_to_plot = 0
        poly_order = 4
        for ib, b in enumerate(self.context.arcs):
            # Starting with pascal shifted coeffs from fit_center()
            coeff = self.action.args.twkcoeff[ib]
            # get bar wavelengths
            bw = np.polyval(coeff, self.action.args.xsvals)
            # smooth spectrum according to slicer
            if 'Small' in self.action.args.ifuname:
                # no smoothing for Small slicer
                bspec = b
            else:
                if 'Large' in self.action.args.ifuname:
                    # max smoothing for Large slicer
                    win = boxcar(5)
                else:
                    # intermediate smoothing for Medium slicer
                    win = boxcar(3)
                # do the smoothing
                bspec = sp.signal.convolve(b, win, mode='same') / sum(win)
            # store values to fit
            at_wave_dat = []  # atlas line wavelengths
            at_flux_dat = []  # atlas line peak fluxes
            arc_pix_dat = []  # arc line pixel positions
            arc_int_dat = []  # arc line pixel intensities
            rej_wave = []  # rejected line wavelengths
            rej_flux = []  # rejected line fluxes
            gaus_sig = []
            nrej = 0
            # loop over lines
            for iw, aw in enumerate(self.action.args.at_wave):
                # get window for this line
                try:
                    # get arc line initial pixel position
                    line_x = [i for i, v in enumerate(bw) if v >= aw][0]
                    # get window for arc line
                    minow, maxow, count = get_line_window(
                        bspec,
                        line_x,
                        thresh=hgt,
                        logger=(self.logger if verbose else None))
                    # do we have enough points to fit?
                    if count < 5 or not minow or not maxow:
                        rej_wave.append(aw)
                        rej_flux.append(self.action.args.at_flux[iw])
                        nrej += 1
                        if verbose:
                            self.logger.info(
                                "Arc window rejected for line %.3f" % aw)
                        continue
                    # check if window no longer contains initial value
                    if minow > line_x > maxow:
                        rej_wave.append(aw)
                        rej_flux.append(self.action.args.at_flux[iw])
                        nrej += 1
                        if verbose:
                            self.logger.info(
                                "Arc window wandered off for line %.3f" % aw)
                        continue
                    # get data to fit
                    yvec = bspec[minow:maxow + 1]
                    xvec = self.action.args.xsvals[minow:maxow + 1]
                    wvec = bw[minow:maxow + 1]
                    f0 = max(yvec)
                    par_start = [f0, np.nanmean(xvec), 1.0]
                    par_bounds = ([f0 * 0.9, np.min(xvec),
                                   0.5], [f0 * 1.1,
                                          np.max(xvec), 2.5])
                    # Gaussian fit
                    try:
                        fit, _ = curve_fit(gaus, xvec, yvec, p0=par_start)
                        #  bounds=par_bounds, method='trf')
                        sp_pk_x = fit[1]
                        gaus_sig.append(fit[2])
                    except (RuntimeError, ValueError):
                        rej_wave.append(aw)
                        rej_flux.append(self.action.args.at_flux[iw])
                        nrej += 1
                        if verbose:
                            self.logger.info(
                                "Arc Gaussian fit rejected for line %.3f" % aw)
                        # sp_pk_x = line_x
                        continue

                    # get interpolation of arc line
                    int_line = interpolate.interp1d(xvec,
                                                    yvec,
                                                    kind='cubic',
                                                    bounds_error=False,
                                                    fill_value='extrapolate')
                    # use very dense sampling
                    xplot = np.linspace(min(xvec), max(xvec), num=1000)
                    # re-sample line with dense sampling
                    plt_line = int_line(xplot)
                    # get peak position
                    max_index = plt_line.argmax()
                    peak = xplot[max_index]
                    # calculate centroid
                    cent = np.sum(xvec * yvec) / np.sum(yvec)
                    # how different is the centroid from the peak?
                    if abs(cent - peak) > 0.7:
                        # keep track of rejected line
                        rej_wave.append(aw)
                        rej_flux.append(self.action.args.at_flux[iw])
                        nrej += 1
                        if verbose:
                            self.logger.info("Arc peak - cent offset = %.2f "
                                             "rejected for line %.3f" %
                                             (abs(cent - peak), aw))
                        continue
                    if plt_line[max_index] < 100:
                        # keep track of rejected line
                        rej_wave.append(aw)
                        rej_flux.append(self.action.args.at_flux[iw])
                        nrej += 1
                        if verbose:
                            self.logger.info("Arc peak too low = %.2f "
                                             "rejected for line %.3f" %
                                             (plt_line[max_index], aw))
                        continue
                    # store surviving line data
                    arc_pix_dat.append(peak)
                    arc_int_dat.append(plt_line[max_index])
                    at_wave_dat.append(aw)
                    at_flux_dat.append(self.action.args.at_flux[iw])
                    # plot, if requested
                    if do_inter and ib == next_bar_to_plot:
                        ptitle = " Bar# %d - line %3d/%3d: xc = %.1f, " \
                                 "Wave = %9.2f" % \
                                 (ib, (iw + 1), len(self.action.args.at_wave),
                                  peak, aw)
                        atx0 = [
                            i for i, v in enumerate(atwave) if v >= min(wvec)
                        ][0]
                        atx1 = [
                            i for i, v in enumerate(atwave) if v >= max(wvec)
                        ][0]
                        atnorm = np.nanmax(yvec) / np.nanmax(atspec[atx0:atx1])
                        p = figure(
                            title=self.action.args.plotlabel +
                            "ATLAS/ARC LINE FITS" + ptitle,
                            x_axis_label="Wavelength (A)",
                            y_axis_label="Relative Flux",
                            plot_width=self.config.instrument.plot_width,
                            plot_height=self.config.instrument.plot_height)
                        ylim = [0, np.nanmax(yvec)]
                        p.line(atwave[atx0:atx1],
                               atspec[atx0:atx1] * atnorm,
                               color='blue',
                               legend_label='Atlas')
                        p.circle(atwave[atx0:atx1],
                                 atspec[atx0:atx1] * atnorm,
                                 color='green',
                                 legend_label='Atlas')
                        p.line([aw, aw],
                               ylim,
                               color='red',
                               legend_label='AtCntr')
                        p.x_range = Range1d(start=min(wvec), end=max(wvec))
                        p.extra_x_ranges = {
                            "pix": Range1d(start=min(xvec), end=max(xvec))
                        }
                        p.add_layout(
                            LinearAxis(x_range_name="pix",
                                       axis_label="CCD Y pix"), 'above')
                        p.line(xplot,
                               plt_line,
                               color='black',
                               legend_label='Arc',
                               x_range_name="pix")
                        p.circle(xvec,
                                 yvec,
                                 legend_label='Arc',
                                 color='red',
                                 x_range_name="pix")
                        ylim = [0, np.nanmax(plt_line)]
                        p.line([cent, cent],
                               ylim,
                               color='green',
                               legend_label='Cntr',
                               line_dash='dashed',
                               x_range_name="pix")
                        p.line([sp_pk_x, sp_pk_x],
                               ylim,
                               color='magenta',
                               legend_label='Gpeak',
                               line_dash='dashdot',
                               x_range_name="pix")
                        p.line([peak, peak],
                               ylim,
                               color='black',
                               legend_label='Peak',
                               line_dash='dashdot',
                               x_range_name="pix")
                        p.y_range.start = 0
                        bokeh_plot(p, self.context.bokeh_session)

                        q = input(ptitle + " - Next? <cr>, q to quit: ")
                        if 'Q' in q.upper():
                            do_inter = False
                except IndexError:
                    if verbose:
                        self.logger.info(
                            "Atlas line not in observation: %.2f" % aw)
                    rej_wave.append(aw)
                    rej_flux.append(self.action.args.at_flux[iw])
                    nrej += 1
                    continue
                except ValueError:
                    if verbose:
                        self.logger.info(
                            "Interpolation error for line at %.2f" % aw)
                    rej_wave.append(aw)
                    rej_flux.append(self.action.args.at_flux[iw])
                    nrej += 1
            self.logger.info("")
            self.logger.info("Fitting wavelength solution starting with %d "
                             "lines after rejecting %d lines" %
                             (len(arc_pix_dat), nrej))
            # Fit wavelengths
            # Get poly order
            if self.action.args.dichroic_fraction <= 0.6:
                poly_order = 2
            elif 0.6 < self.action.args.dichroic_fraction < 0.75:
                poly_order = 3
            else:
                poly_order = 4
            self.logger.info("Fitting with polynomial order %d" % poly_order)
            # Initial fit
            wfit = np.polyfit(arc_pix_dat, at_wave_dat, poly_order)
            pwfit = np.poly1d(wfit)
            arc_wave_fit = pwfit(arc_pix_dat)
            # fit residuals
            resid = arc_wave_fit - at_wave_dat
            resid_c, low, upp = sigmaclip(resid, low=3., high=3.)
            wsig = resid_c.std()
            # maximum outlier
            max_resid = np.max(abs(resid))
            self.logger.info("wsig: %.3f, max_resid: %.3f" % (wsig, max_resid))
            # keep track of rejected lines
            rej_rsd = []  # rejected line residuals
            rej_rsd_wave = []  # rejected line wavelengths
            rej_rsd_flux = []  # rejected line fluxes
            # iteratively remove outliers
            it = 0
            while max_resid > 2.5 * wsig and it < 25:
                arc_dat = []  # arc line pixel values
                arc_fdat = []  # arc line flux data
                at_dat = []  # atlas line wavelength values
                at_fdat = []  # atlas line flux data
                # trim largest outlier
                for il, rsd in enumerate(resid):
                    if abs(rsd) < max_resid:
                        # append data for line that passed cut
                        arc_dat.append(arc_pix_dat[il])
                        arc_fdat.append(arc_int_dat[il])
                        at_dat.append(at_wave_dat[il])
                        at_fdat.append(at_flux_dat[il])
                    else:
                        if verbose:
                            self.logger.info("It%d REJ: %d, %.2f, %.3f, %.3f" %
                                             (it, il, arc_pix_dat[il],
                                              at_wave_dat[il], rsd))
                        # keep track of rejected lines
                        rej_rsd_wave.append(at_wave_dat[il])
                        rej_rsd_flux.append(at_flux_dat[il])
                        rej_rsd.append(rsd)
                # copy cleaned data back into input arrays
                arc_pix_dat = arc_dat.copy()
                arc_int_dat = arc_fdat.copy()
                at_wave_dat = at_dat.copy()
                at_flux_dat = at_fdat.copy()
                # refit cleaned data
                wfit = np.polyfit(arc_pix_dat, at_wave_dat, poly_order)
                # new wavelength function
                pwfit = np.poly1d(wfit)
                # new wavelengths for arc lines
                arc_wave_fit = pwfit(arc_pix_dat)
                # calculate residuals of arc lines
                resid = arc_wave_fit - at_wave_dat
                # get statistics
                resid_c, low, upp = sigmaclip(resid, low=3., high=3.)
                wsig = resid_c.std()
                # maximum outlier
                max_resid = np.max(abs(resid))
                # wsig = np.nanstd(resid)
                it += 1
            # END while max_resid > 3.5 * wsig and it < 5:
            # log arc bar results
            self.logger.info("")
            self.logger.info("BAR %03d, Slice = %02d, RMS = %.3f, N = %d" %
                             (ib, int(ib / 5), wsig, len(arc_pix_dat)))
            self.logger.info("Nits: %d, wsig: %.3f, max_resid: %.3f" %
                             (it, wsig, max_resid))
            self.logger.info("NRejRsd: %d, NRejFit: %d" %
                             (len(rej_rsd_wave), len(rej_wave)))
            self.logger.info("Line width median sigma: %.2f px" %
                             np.nanmedian(gaus_sig))
            self.logger.info("Coefs: " +
                             ' '.join(['%.6g' % (c, )
                                       for c in reversed(wfit)]))
            # store final fit coefficients
            self.action.args.fincoeff.append(wfit)
            # store statistics
            bar_sig.append(wsig)
            bar_nls.append(len(arc_pix_dat))
            # do plotting?
            if master_inter and ib == next_bar_to_plot:
                # plot bar fit residuals
                ptitle = " for Bar %03d, Slice %02d, RMS = %.3f, N = %d" % \
                         (ib, int(ib / 5), wsig, len(arc_pix_dat))
                p = figure(title=self.action.args.plotlabel + "RESIDUALS" +
                           ptitle,
                           x_axis_label="Wavelength (A)",
                           y_axis_label="Fit - Inp (A)",
                           plot_width=self.config.instrument.plot_width,
                           plot_height=self.config.instrument.plot_height)
                p.diamond(at_wave_dat, resid, legend_label='Rsd', size=8)
                if rej_rsd_wave:
                    p.diamond(rej_rsd_wave,
                              rej_rsd,
                              color='orange',
                              legend_label='Rej',
                              size=8)
                xlim = [self.action.args.atminwave, self.action.args.atmaxwave]
                ylim = [
                    np.nanmin(list(resid) + list(rej_rsd)),
                    np.nanmax(list(resid) + list(rej_rsd))
                ]
                p.line(xlim, [0., 0.], color='black', line_dash='dotted')
                p.line(xlim, [wsig, wsig], color='gray', line_dash='dashdot')
                p.line(xlim, [-wsig, -wsig], color='gray', line_dash='dashdot')
                p.line([self.action.args.cwave, self.action.args.cwave],
                       ylim,
                       legend_label='CWAV',
                       color='magenta',
                       line_dash='dashdot')
                bokeh_plot(p, self.context.bokeh_session)
                input("Next? <cr>: ")

                # overplot atlas and bar using fit wavelengths
                p = figure(title=self.action.args.plotlabel + "ATLAS/ARC FIT" +
                           ptitle,
                           x_axis_label="Wavelength (A)",
                           y_axis_label="Flux",
                           plot_width=self.config.instrument.plot_width,
                           plot_height=self.config.instrument.plot_height)
                bwav = pwfit(self.action.args.xsvals)
                p.line(bwav, b, color='darkgrey', legend_label='Arc')
                p.diamond(arc_wave_fit, arc_int_dat, color='darkgrey', size=8)
                ylim = [np.nanmin(b), np.nanmax(b)]
                atnorm = np.nanmax(b) / np.nanmax(atspec)
                p.line(atwave,
                       atspec * atnorm,
                       color='blue',
                       legend_label='Atlas')
                p.line([self.action.args.cwave, self.action.args.cwave],
                       ylim,
                       color='magenta',
                       line_dash='dashdot',
                       legend_label='CWAV')
                p.diamond(at_wave,
                          at_flux * atnorm,
                          legend_label='Kept',
                          color='green',
                          size=8)
                if rej_rsd_wave:
                    p.diamond(rej_rsd_wave,
                              [rj * atnorm for rj in rej_rsd_flux],
                              color='orange',
                              legend_label='RejRsd',
                              size=6)
                p.diamond(rej_wave, [rj * atnorm for rj in rej_flux],
                          color='red',
                          legend_label='RejFit',
                          size=6)
                bokeh_plot(p, self.context.bokeh_session)
                q = input("Next? <int> or <cr>, q - quit: ")
                if 'Q' in q.upper():
                    master_inter = False
                else:
                    try:
                        next_bar_to_plot = int(q)
                    except ValueError:
                        next_bar_to_plot = ib + 1

        # Plot final results

        # plot output name stub
        pfname = "arc_%05d_%s_%s_%s_tf%02d" % (
            self.action.args.ccddata.header['FRAMENO'], self.action.args.illum,
            self.action.args.grating, self.action.args.ifuname,
            int(100 * self.config.instrument.TAPERFRAC))

        # Plot coefs
        if self.config.instrument.plot_level >= 1:
            ylabs = ['Ang/px^4', 'Ang/px^3', 'Ang/px^2', 'Ang/px', 'Ang']
            ylabs = ylabs[-(poly_order + 1):]
            for ic in reversed(range(len(self.action.args.fincoeff[0]))):
                cn = poly_order - ic
                ptitle = self.action.args.plotlabel + "COEF %d VALUES" % cn
                p = figure(title=ptitle,
                           x_axis_label="Bar #",
                           y_axis_label="Coef %d (%s)" % (cn, ylabs[ic]),
                           plot_width=self.config.instrument.plot_width,
                           plot_height=self.config.instrument.plot_height)
                coef = []
                for c in self.action.args.fincoeff:
                    coef.append(c[ic])
                p.diamond(list(range(120)), coef, size=8)
                xlim = [-1, 120]
                ylim = get_plot_lims(coef)
                p.xgrid.grid_line_color = None
                oplot_slices(p, ylim)
                set_plot_lims(p, xlim=xlim, ylim=ylim)
                bokeh_plot(p, self.context.bokeh_session)
                if self.config.instrument.plot_level >= 2:
                    input("Next? <cr>: ")
                else:
                    time.sleep(self.config.instrument.plot_pause)
                # save coefficients plot
                save_plot(p, filename=pfname + '_coef%d.png' % cn)

        # Plot number of lines fit
        self.action.args.av_bar_nls = float(np.nanmean(bar_nls))
        self.action.args.st_bar_nls = float(np.nanstd(bar_nls))
        ptitle = self.action.args.plotlabel + \
            "FIT STATS <Nlns> = %.1f +- %.1f" % (self.action.args.av_bar_nls,
                                                 self.action.args.st_bar_nls)
        p = figure(title=ptitle,
                   x_axis_label="Bar #",
                   y_axis_label="N Lines",
                   plot_width=self.config.instrument.plot_width,
                   plot_height=self.config.instrument.plot_height)
        p.diamond(list(range(120)), bar_nls, size=8)
        xlim = [-1, 120]
        ylim = get_plot_lims(bar_nls)
        self.logger.info(
            "<N Lines> = %.1f +- %.1f" %
            (self.action.args.av_bar_nls, self.action.args.st_bar_nls))
        p.line(xlim,
               [self.action.args.av_bar_nls, self.action.args.av_bar_nls],
               color='red')
        p.line(xlim,
               [(self.action.args.av_bar_nls - self.action.args.st_bar_nls),
                (self.action.args.av_bar_nls - self.action.args.st_bar_nls)],
               color='green',
               line_dash='dashed')
        p.line(xlim,
               [(self.action.args.av_bar_nls + self.action.args.st_bar_nls),
                (self.action.args.av_bar_nls + self.action.args.st_bar_nls)],
               color='green',
               line_dash='dashed')
        p.xgrid.grid_line_color = None
        oplot_slices(p, ylim)
        set_plot_lims(p, xlim=xlim, ylim=ylim)
        if self.config.instrument.plot_level >= 1:
            bokeh_plot(p, self.context.bokeh_session)
            if self.config.instrument.plot_level >= 2:
                input("Next? <cr>: ")
            else:
                time.sleep(self.config.instrument.plot_pause)
        # save N lines plot
        save_plot(p, filename=pfname + '_nlines.png')

        # Plot fit sigmas
        self.action.args.av_bar_sig = float(np.nanmean(bar_sig))
        self.action.args.st_bar_sig = float(np.nanstd(bar_sig))
        self.logger.info(
            "<STD>     = %.3f +- %.3f (A)" %
            (self.action.args.av_bar_sig, self.action.args.st_bar_sig))

        ptitle = self.action.args.plotlabel + \
            "FIT STATS <RMS> = %.3f +- %.3f" % (self.action.args.av_bar_sig,
                                                self.action.args.st_bar_sig)
        p = figure(title=ptitle,
                   x_axis_label="Bar #",
                   y_axis_label="RMS (A)",
                   plot_width=self.config.instrument.plot_width,
                   plot_height=self.config.instrument.plot_height)
        p.diamond(list(range(120)), bar_sig, size=8)
        xlim = [-1, 120]
        ylim = get_plot_lims(bar_sig)
        p.line(xlim,
               [self.action.args.av_bar_sig, self.action.args.av_bar_sig],
               color='red')
        p.line(xlim,
               [(self.action.args.av_bar_sig - self.action.args.st_bar_sig),
                (self.action.args.av_bar_sig - self.action.args.st_bar_sig)],
               color='green',
               line_dash='dashed')
        p.line(xlim,
               [(self.action.args.av_bar_sig + self.action.args.st_bar_sig),
                (self.action.args.av_bar_sig + self.action.args.st_bar_sig)],
               color='green',
               line_dash='dashed')
        p.xgrid.grid_line_color = None
        oplot_slices(p, ylim)
        set_plot_lims(p, xlim=xlim, ylim=ylim)
        if self.config.instrument.plot_level >= 1:
            bokeh_plot(p, self.context.bokeh_session)
            if self.config.instrument.plot_level >= 2:
                input("Next? <cr>: ")
            else:
                time.sleep(self.config.instrument.plot_pause)

        # save residual plot
        save_plot(p, filename=pfname + '_resid.png')

        log_string = SolveArcs.__module__
        self.action.args.ccddata.header['HISTORY'] = log_string
        self.logger.info(log_string)

        return self.action.args
예제 #5
0
    def _perform(self):

        # Header keyword to update
        key = 'SCATSUB'
        keycom = "was scattered light subtracted?"

        # Skip if nod-and-shuffle
        if self.action.args.nasmask:
            self.logger.info("NAS Mask: skipping scattered light subtraction")
            self.action.args.ccddata.header[key] = (False, keycom)
        elif self.config.instrument.skipscat:
            self.logger.info("Skipping scattered light subtraction by request")
            self.action.args.ccddata.header[key] = (False, keycom)
        else:
            # Binning
            ybin = self.action.args.ybinsize
            # Get size of image
            siz = self.action.args.ccddata.data.shape
            # Get x range for scattered light
            x0 = int(siz[1] / 2 - 180 / self.action.args.xbinsize)
            x1 = int(siz[1] / 2 + 180 / self.action.args.xbinsize)
            # Get y limits
            y0 = 0
            # y1 = int(siz[0] / 2 - 1)
            # y2 = y1 + 1
            y3 = siz[0]
            # print("x limits: %d, %d, y limits: %d, %d" % (x0, x1, y0, y3))
            # Y data values
            yvals = np.nanmedian(self.action.args.ccddata.data[y0:y3, x0:x1],
                                 axis=1)
            # Fix extreme values
            yvals[0] = np.nanmedian(yvals[1:10])
            yvals[-1] = np.nanmedian(yvals[-11:-2])
            # X data values
            xvals = np.arange(len(yvals), dtype=np.float)
            # filter window
            fwin = 151
            scat = savgol_filter(yvals, fwin, 3)
            signal_to_noise = np.mean(scat) / np.nanstd(yvals - scat)
            if signal_to_noise < 25.:
                if signal_to_noise < 5:
                    fwin = 501
                else:
                    fwin = 303
                scat = savgol_filter(yvals, fwin, 3)
                signal_to_noise = np.mean(scat) / np.nanstd(yvals - scat)
            self.logger.info("Smoothing scattered light with window of %d px" %
                             fwin)
            self.logger.info("Mean signal to noise = %.2f" % signal_to_noise)
            if self.config.instrument.plot_level >= 1:
                # output filename stub
                scfnam = "scat_%05d_%s_%s_%s" % \
                         (self.action.args.ccddata.header['FRAMENO'],
                          self.action.args.illum, self.action.args.grating,
                          self.action.args.ifuname)
                # plot
                p = figure(title=self.action.args.plotlabel +
                           "SCATTERED LIGHT FIT",
                           x_axis_label='y pixel',
                           y_axis_label='e-',
                           plot_width=self.config.instrument.plot_width,
                           plot_height=self.config.instrument.plot_height)
                p.circle(xvals, yvals, legend_label="Scat")
                p.line(xvals,
                       scat,
                       color='red',
                       line_width=3,
                       legend_label="Smooth")
                p.legend.location = "top_left"
                bokeh_plot(p, self.context.bokeh_session)
                if self.config.instrument.plot_level >= 2:
                    input("Next? <cr>: ")
                else:
                    time.sleep(self.config.instrument.plot_pause)
                save_plot(p, filename=scfnam + ".png")
            # Subtract scattered light
            self.logger.info("Starting scattered light subtraction")
            for ix in range(0, siz[1]):
                self.action.args.ccddata.data[y0:y3, ix] = \
                    self.action.args.ccddata.data[y0:y3, ix] - scat
            self.action.args.ccddata.header[key] = (True, keycom)

        log_string = SubtractScatteredLight.__module__
        self.action.args.ccddata.header['HISTORY'] = log_string
        self.logger.info(log_string)

        # write out int image
        kcwi_fits_writer(self.action.args.ccddata,
                         table=self.action.args.table,
                         output_file=self.action.args.name,
                         output_dir=self.config.instrument.output_directory,
                         suffix="intd")
        self.context.proctab.update_proctab(frame=self.action.args.ccddata,
                                            suffix="intd")
        self.context.proctab.write_proctab()

        return self.action.args
예제 #6
0
    def _perform(self):
        """
        Returns an Argument() with the parameters that depends on this operation
        """
        self.logger.info("Creating master sky")

        suffix = self.action.args.new_type.lower()

        # get root for maps
        tab = self.context.proctab.n_proctab(
            frame=self.action.args.ccddata, target_type='ARCLAMP',
            target_group=self.action.args.groupid)
        if len(tab) <= 0:
            self.logger.error("Geometry not solved!")
            return self.action.args

        groot = tab['OFNAME'][0].split('.fits')[0]

        # Wavelength map image
        wmf = groot + '_wavemap.fits'
        self.logger.info("Reading image: %s" % wmf)
        wavemap = kcwi_fits_reader(
            os.path.join(os.path.dirname(self.action.args.name), 'redux',
                         wmf))[0]

        # Slice map image
        slf = groot + '_slicemap.fits'
        self.logger.info("Reading image: %s" % slf)
        slicemap = kcwi_fits_reader(
            os.path.join(os.path.dirname(self.action.args.name), 'redux',
                         slf))[0]

        # Position map image
        pof = groot + '_posmap.fits'
        self.logger.info("Reading image: %s" % pof)
        posmap = kcwi_fits_reader(
            os.path.join(os.path.dirname(self.action.args.name), 'redux',
                         pof))[0]
        posmax = np.nanmax(posmap.data)
        posbuf = int(10. / self.action.args.xbinsize)

        # wavelength region
        wavegood0 = wavemap.header['WAVGOOD0']
        wavegood1 = wavemap.header['WAVGOOD1']
        waveall0 = wavemap.header['WAVALL0']
        waveall1 = wavemap.header['WAVALL1']

        # get image size
        sm_sz = self.action.args.ccddata.data.shape

        # sky masking
        # default is no masking (True = mask, False = don't mask)
        binary_mask = np.zeros(sm_sz, dtype=bool)

        # was sky masking requested?
        if self.action.args.skymask:
            if os.path.exists(self.action.args.skymask):
                self.logger.info("Reading sky mask file: %s"
                                 % self.action.args.skymask)
                hdul = fits.open(self.action.args.skymask)
                binary_mask = hdul[0].data
                # verify size match
                bm_sz = binary_mask.shape
                if bm_sz[0] != sm_sz[0] or bm_sz[1] != sm_sz[1]:
                    self.logger.warning("Sky mask size mis-match: "
                                        "masking disabled")
                    binary_mask = np.zeros(sm_sz, dtype=bool)
            else:
                self.logger.warning("Sky mask image not found: %s"
                                    % self.action.args.skymask)

        # count masked pixels
        tmsk = len(np.nonzero(np.where(binary_mask.flat, True, False))[0])
        self.logger.info("Number of pixels masked = %d" % tmsk)

        finiteflux = np.isfinite(self.action.args.ccddata.data.flat)

        # get un-masked points mapped to exposed regions on CCD
        # handle dichroic bad region
        if self.action.args.dich:
            if self.action.args.camera == 0:    # Blue
                q = [i for i, v in enumerate(slicemap.data.flat)
                     if 0 <= v <= 23 and
                     posbuf < posmap.data.flat[i] < (posmax - posbuf) and
                     waveall0 <= wavemap.data.flat[i] <= waveall1 and
                     not (v > 20 and wavemap.data.flat[i] > 5600.) and
                     finiteflux[i] and not binary_mask.flat[i]]
            else:                               # Red
                q = [i for i, v in enumerate(slicemap.data.flat)
                     if 0 <= v <= 23 and
                     posbuf < posmap.data.flat[i] < (posmax - posbuf) and
                     waveall0 <= wavemap.data.flat[i] <= waveall1 and
                     not (v > 20 and wavemap.data.flat[i] < 5600.) and
                     finiteflux[i] and not binary_mask.flat[i]]
        else:
            q = [i for i, v in enumerate(slicemap.data.flat)
                 if 0 <= v <= 23 and
                 posbuf < posmap.data.flat[i] < (posmax - posbuf) and
                 waveall0 <= wavemap.data.flat[i] <= waveall1 and
                 finiteflux[i] and not binary_mask.flat[i]]

        # get all points mapped to exposed regions on the CCD (for output)
        qo = [i for i, v in enumerate(slicemap.data.flat)
              if 0 <= v <= 23 and posmap.data.flat[i] >= 0 and
              waveall0 <= wavemap.data.flat[i] <= waveall1 and
              finiteflux[i]]

        # extract relevant image values
        fluxes = self.action.args.ccddata.data.flat[q]

        # relevant wavelengths
        waves = wavemap.data.flat[q]
        self.logger.info("Number of fit waves = %d" % len(waves))

        # keep output wavelengths
        owaves = wavemap.data.flat[qo]
        self.logger.info("Number of output waves = %d" % len(owaves))

        # sort on wavelength
        s = np.argsort(waves)
        waves = waves[s]
        fluxes = fluxes[s]

        # knots per pixel
        knotspp = self.config.instrument.KNOTSPP
        n = int(sm_sz[0] * knotspp)

        # calculate break points for b splines
        bkpt = np.min(waves) + np.arange(n+1) * \
            (np.max(waves) - np.min(waves)) / n

        # log
        self.logger.info("Nknots = %d, min = %.2f, max = %.2f (A)" %
                         (n, np.min(bkpt), np.max(bkpt)))

        # do bspline fit
        sft0, gmask = Bspline.iterfit(waves, fluxes, fullbkpt=bkpt,
                                      upper=1, lower=1)
        gp = [i for i, v in enumerate(gmask) if v]
        yfit1, _ = sft0.value(waves)
        self.logger.info("Number of good points = %d" % len(gp))

        # check result
        if np.max(yfit1) < 0:
            self.logger.warning("B-spline failure")
            if n > 2000:
                if n == 5000:
                    n = 2000
                if n == 8000:
                    n = 5000
                # calculate breakpoints
                bkpt = np.min(waves) + np.arange(n + 1) * \
                    (np.max(waves) - np.min(waves)) / n
                # log
                self.logger.info("Nknots = %d, min = %.2f, max = %.2f (A)" %
                                 (n, np.min(bkpt), np.max(bkpt)))
                # do bspline fit
                sft0, gmask = Bspline.iterfit(waves, fluxes, fullbkpt=bkpt,
                                              upper=1, lower=1)
                yfit1, _ = sft0.value(waves)
            if np.max(yfit1) <= 0:
                self.logger.warning("B-spline final failure, sky is zero")

        # get values at original wavelengths
        yfit, _ = sft0.value(owaves)

        # for plotting
        gwaves = waves[gp]
        gfluxes = fluxes[gp]
        npts = len(gwaves)
        stride = int(npts / 8000.)
        xplt = gwaves[::stride]
        yplt = gfluxes[::stride]
        fplt, _ = sft0.value(xplt)
        yrng = [np.min(yplt), np.max(yplt)]
        self.logger.info("Stride = %d" % stride)

        # plot, if requested
        if self.config.instrument.plot_level >= 1:
            # output filename stub
            skyfnam = "sky_%05d_%s_%s_%s" % \
                     (self.action.args.ccddata.header['FRAMENO'],
                      self.action.args.illum, self.action.args.grating,
                      self.action.args.ifuname)
            p = figure(
                title=self.action.args.plotlabel + ' Master Sky',
                x_axis_label='Wave (A)',
                y_axis_label='Flux (e-)',
                plot_width=self.config.instrument.plot_width,
                plot_height=self.config.instrument.plot_height)
            p.circle(xplt, yplt, size=1, line_alpha=0., fill_color='purple',
                     legend_label='Data')
            p.line(xplt, fplt, line_color='red', legend_label='Fit')
            p.line([wavegood0, wavegood0], yrng, line_color='green')
            p.line([wavegood1, wavegood1], yrng, line_color='green')
            p.y_range.start = yrng[0]
            p.y_range.end = yrng[1]
            bokeh_plot(p, self.context.bokeh_session)
            if self.config.instrument.plot_level >= 2:
                input("Next? <cr>: ")
            else:
                time.sleep(self.config.instrument.plot_pause)
            save_plot(p, filename=skyfnam+".png")

        # create sky image
        sky = np.zeros(self.action.args.ccddata.data.shape, dtype=float)
        sky.flat[qo] = yfit

        # store original data, header
        img = self.action.args.ccddata.data
        hdr = self.action.args.ccddata.header.copy()
        self.action.args.ccddata.data = sky

        # get master sky output name
        ofn = self.action.args.ccddata.header['OFNAME']
        msname = ofn.split('.fits')[0] + '_' + suffix + '.fits'

        log_string = MakeMasterSky.__module__
        self.action.args.ccddata.header['IMTYPE'] = self.action.args.new_type
        self.action.args.ccddata.header['HISTORY'] = log_string
        self.action.args.ccddata.header['SKYMODEL'] = (True, 'sky model image?')
        self.action.args.ccddata.header['SKYIMAGE'] = \
            (ofn, 'image used for sky model')
        if tmsk > 0:
            self.action.args.ccddata.header['SKYMSK'] = (True,
                                                         'was sky masked?')
            # self.action.args.ccddata.header['SKYMSKF'] = (skymf,
            # 'sky mask file')
        else:
            self.action.args.ccddata.header['SKYMSK'] = (False,
                                                         'was sky masked?')
        self.action.args.ccddata.header['WAVMAPF'] = wmf
        self.action.args.ccddata.header['SLIMAPF'] = slf
        self.action.args.ccddata.header['POSMAPF'] = pof

        # output master sky
        kcwi_fits_writer(self.action.args.ccddata, output_file=msname,
                         output_dir=self.config.instrument.output_directory)
        self.context.proctab.update_proctab(frame=self.action.args.ccddata,
                                            suffix=suffix,
                                            newtype=self.action.args.new_type)
        self.context.proctab.write_proctab()

        # restore original image
        self.action.args.ccddata.data = img
        self.action.args.ccddata.header = hdr

        self.logger.info(log_string)
        return self.action.args
예제 #7
0
    def _perform(self):
        self.logger.info("Making inverse sensitivity curve")

        suffix = 'invsens'
        stdname = self.action.args.stdname

        # get size
        sz = self.action.args.ccddata.data.shape
        # default pixel ranges
        z = np.arange(sz[0])
        z0 = 175
        z1 = sz[0] - 175
        # get exposure time
        expt = self.action.args.ccddata.header['XPOSURE']
        if expt == 0.:
            self.logger.warning("No exposure time found, setting to 1s")
            expt = 1.
        else:
            self.logger.info("Using exposure time of %.1f" % expt)
        # get wavelength scale
        w0 = self.action.args.ccddata.header['CRVAL3']
        dw = self.action.args.ccddata.header['CD3_3']
        crpixw = self.action.args.ccddata.header['CRPIX3']
        # get all good wavelength range
        wgoo0 = self.action.args.ccddata.header['WAVGOOD0']
        if wgoo0 < 3650:
            wgoo0 = 3650.
        wgoo1 = self.action.args.ccddata.header['WAVGOOD1']
        # get all inclusive wavelength range
        wall0 = self.action.args.ccddata.header['WAVALL0']
        wall1 = self.action.args.ccddata.header['WAVALL1']
        # get DAR padding in y
        pad_y = self.action.args.ccddata.header['DARPADY']
        # get sky subtraction status
        skycor = self.action.args.ccddata.header['SKYCOR']
        # get telescope and atm. correction
        if 'TELESCOP' in self.action.args.ccddata.header:
            tel = self.action.args.ccddata.header['TELESCOP']
        else:
            tel = 'KeckI'
        if 'Keck' in tel:
            area = 760000.0
        else:
            area = -1.0
        # compute good y pixel ranges
        if w0 > 0. and dw > 0. and wgoo0 > 0. and wgoo1 > 0.:
            z0 = int((wgoo0 - w0) / dw) + 10
            z1 = int((wgoo1 - w0) / dw) - 10
        # wavelength scale
        w = w0 + z * dw
        # good spatial range
        gy0 = pad_y if pad_y > 1 else 1
        gy1 = sz[1] - (pad_y if pad_y > 2 else 2)
        # log results
        self.logger.info("Invsen. Pars: Y0, Y1, Z0, Z1, Wav0, Wav1: "
                         "%d, %d, %d, %d, %.3f, %.3f" %
                         (gy0, gy1, z0, z1, w[z0], w[z1]))
        # central wavelength
        cwv = self.action.args.cwave
        # find standard in slices
        # sum over wavelength
        tot = np.sum(self.action.args.ccddata.data[z0:z1, gy0:gy1, :], 0)
        # yy = np.arange(gy1-gy0) + gy0
        mxsl = -1.
        mxsg = 0.
        # for each slice
        for i in range(sz[2]):
            tstd = float(np.nanstd(tot[:, i]))
            if tstd > mxsg:
                mxsg = tstd
                mxsl = i

        # relevant slices
        sl0 = (mxsl - 3) if mxsl >= 3 else 0
        sl1 = (mxsl + 3) if (mxsl + 3) <= sz[2] - 1 else sz[2] - 1
        # get y position of std
        cy, _ = find_peaks(tot[:, mxsl], height=np.nanmean(tot[:, mxsl]))
        cy = int(cy[0]) + gy0
        # log results
        self.logger.info("Std lices: max, sl0, sl1, spatial cntrd: "
                         "%d, %d, %d, %.2f" % (mxsl, sl0, sl1, cy))
        # get dwave spectrum
        ofn = self.action.args.ccddata.header['OFNAME']
        delfn = ofn.split('.')[0] + '_dcubed.fits'
        full_path = os.path.join(os.path.dirname(self.action.args.name),
                                 self.config.instrument.output_directory,
                                 delfn)
        if os.path.exists(full_path):
            dew = kcwi_fits_reader(full_path)[0]
            dwspec = dew.data[:, cy, mxsl]
            zeros = np.where(dwspec == 0)
            if len(zeros) > 0:
                dwspec[zeros] = dw
        else:
            dwspec = np.zeros(sz[0]) + dw
        # copy of input cube
        scub = self.action.args.ccddata.data.copy()
        # sky window width in pixels
        skywin = int(self.config.instrument.psfwid / self.action.args.xbinsize)
        # do sky subtraction, if needed
        if not skycor:
            self.logger.warning("Sky should have been subtraced already")
        # apply extinction correction
        ucub = scub.copy()  # uncorrected cube
        kcwi_correct_extin(scub,
                           self.action.args.ccddata.header,
                           logger=self.logger)

        # get slice spectra y limits
        sy0 = (cy - skywin) if (cy - skywin) > 0 else 0
        sy1 = (cy + skywin) if (cy + skywin) < (sz[1] - 1) else (sz[1] - 1)
        # sum over y range
        slspec = np.sum(scub[:, sy0:sy1, :], 1)
        ulspec = np.sum(ucub[:, sy0:sy1, :], 1)
        # sum over slices
        obsspec = np.sum(slspec[:, sl0:sl1], 1)
        ubsspec = np.sum(ulspec[:, sl0:sl1], 1)
        # convert to e-/second
        obsspec /= expt
        ubsspec /= expt
        # check for zeros
        zeros = np.where(obsspec == 0.)
        if len(zeros) > 0:
            obsmean = np.nanmean(obsspec)
            obsspec[zeros] = obsmean
        # read in standard star spectrum
        hdul = pf.open(self.action.args.stdfile)
        swl = hdul[1].data['WAVELENGTH']
        sflx = hdul[1].data['FLUX']
        sfw = hdul[1].data['FWHM']
        hdul.close()
        # get region of interest
        sroi = [i for i, v in enumerate(swl) if w[0] <= v <= w[-1]]
        nsroi = len(sroi)
        if nsroi <= 0:
            self.logger.error("No standard wavelengths in common")
            return self.action.args
        # expand range after checking for edges
        if sroi[0] > 0:
            sroi.insert(0, sroi[0] - 1)
            nsroi += 1
        if sroi[-1] < (len(swl) - 1):
            sroi.append(sroi[-1] + 1)
            nsroi += 1
        # very sparsely sampled w.r.t. object
        if nsroi <= 1:
            self.logger.error("Not enough standard points")
            return self.action.args
        self.logger.info("Number of standard point = %d" % nsroi)
        # how many points?
        # do_line = nsroi > 20

        swl = swl[sroi]
        sflx = sflx[sroi]
        sfw = sfw[sroi]
        fwhm = np.max(sfw)
        self.logger.info("Reference spectrum FWHM used = %.1f (A)" % fwhm)
        # resample standard onto our wavelength grid
        rsint = interp1d(swl, sflx, kind='cubic', fill_value='extrapolate')
        rsflx = rsint(w)
        # get effective inverse sensitivity
        invsen = rsflx / obsspec
        # convert to photons/s/cm^2/(wl bin = dw)
        rspho = 5.03411250e7 * rsflx * w * dw
        # get effective area
        earea = ubsspec / rspho
        # correct to native bins
        earea *= dw / dwspec
        # Balmer lines
        blines = [6563., 4861., 4341., 4102., 3970., 3889., 3835.]
        # default values (for BM)
        bwid = 0.008  # fractional width to mask
        ford = 9  # fit order
        if 'BL' in self.action.args.grating:
            bwid = 0.004
            ford = 7
        elif 'BH' in self.action.args.grating:
            bwid = 0.012
            ford = 9
        # Adjust for dichroic fraction
        try:
            dichroic_fraction = self.action.args.ccddata.header['DICHFRAC']
        except KeyError:
            dichroic_fraction = 1.
        ford = int(ford * dichroic_fraction)
        if ford < 3:
            ford = 3
        self.logger.info("Fitting Invsens with polynomial order %d" % ford)
        bwids = [bl * bwid for bl in blines]
        # fit inverse sensitivity and effective area
        # get initial region of interest
        wl_good = [i for i, v in enumerate(w) if wgoo0 <= v <= wgoo1]
        nwl_good = len(wl_good)
        if nwl_good <= 0:
            self.logger.error("No good wavelengths to fit")
            return self.action.args
        wlm0 = wgoo0
        wlm1 = wgoo1
        # interactively set wavelength limits
        if self.config.instrument.plot_level >= 1:
            yran = [np.min(obsspec), np.max(obsspec)]
            source = ColumnDataSource(data=dict(x=w, y=obsspec))
            done = False
            while not done:
                p = figure(tooltips=[("x", "@x{0,0.0}"), ("y", "@y{0,0.0}")],
                           title=self.action.args.plotlabel + ' Obs Spec',
                           x_axis_label='Wave (A)',
                           y_axis_label='Intensity (e-)',
                           plot_width=self.config.instrument.plot_width,
                           plot_height=self.config.instrument.plot_height)
                p.line('x', 'y', line_color='black', source=source)
                p.line([wgoo0, wgoo0],
                       yran,
                       line_color='green',
                       legend_label='WAVGOOD')
                p.line([wgoo1, wgoo1], yran, line_color='green')
                p.line([wlm0, wlm0],
                       yran,
                       line_color='blue',
                       legend_label='LIMITS')
                p.line([wlm1, wlm1], yran, line_color='blue')
                p.line([cwv, cwv], yran, line_color='red', legend_label='CWAV')
                set_plot_lims(p, xlim=[wall0, wall1], ylim=yran)
                bokeh_plot(p, self.context.bokeh_session)
                print("WL limits: %.1f - %.1f" % (wlm0, wlm1))
                qstr = input("New? <float> <float>, <cr> - done: ")
                if len(qstr) <= 0:
                    done = True
                else:
                    try:
                        wlm0 = float(qstr.split()[0])
                        wlm1 = float(qstr.split()[1])
                        if wlm1 < wlm0 or wlm0 < wall0 or wlm1 > wall1:
                            wlm0 = wgoo0
                            wlm1 = wgoo1
                            print("range/order error, try again")
                    except (IndexError, ValueError):
                        wlm0 = wgoo0
                        wlm1 = wgoo1
                        print("format error, try again")
            # update region of interest
            wl_good = [i for i, v in enumerate(w) if wlm0 <= v <= wlm1]
            nwl_good = len(wl_good)
        # END: interactively set wavelength limits
        # Now interactively identify lines
        if self.config.instrument.plot_level >= 1:
            yran = [np.min(obsspec), np.max(obsspec)]
            # source = ColumnDataSource(data=dict(x=w, y=obsspec))
            done = False
            while not done:
                p = figure(tooltips=[("x", "@x{0.0}"), ("y", "@y{0.0}")],
                           title=self.action.args.plotlabel + ' Obs Spec',
                           x_axis_label='Wave (A)',
                           y_axis_label='Intensity (e-)',
                           plot_width=self.config.instrument.plot_width,
                           plot_height=self.config.instrument.plot_height)
                p.line(w, obsspec, line_color='black')
                p.line([wgoo0, wgoo0],
                       yran,
                       line_color='green',
                       legend_label='WAVGOOD')
                p.line([wgoo1, wgoo1], yran, line_color='green')
                p.line([wlm0, wlm0],
                       yran,
                       line_color='blue',
                       legend_label='LIMITS')
                p.line([wlm1, wlm1], yran, line_color='blue')
                p.line([cwv, cwv], yran, line_color='red', legend_label='CWAV')
                for il, bl in enumerate(blines):
                    if wall0 < bl < wall1:
                        p.line([bl, bl], yran, line_color='orange')
                        p.line([bl - bwids[il], bl - bwids[il]],
                               yran,
                               line_color='orange',
                               line_dash='dashed')
                        p.line([bl + bwids[il], bl + bwids[il]],
                               yran,
                               line_color='orange',
                               line_dash='dashed')
                set_plot_lims(p, xlim=[wall0, wall1], ylim=yran)
                bokeh_plot(p, self.context.bokeh_session)
                qstr = input("New lines? <float> [<float>] ... (A), "
                             "<cr> - done: ")
                if len(qstr) <= 0:
                    done = True
                else:
                    for lstr in qstr.split():
                        try:
                            new_line = float(lstr)
                        except ValueError:
                            print("bad line: %s" % lstr)
                            continue
                        if wlm0 < new_line < wlm1:
                            blines.append(new_line)
                            bwids.append(bwid * new_line)
                        else:
                            print("line outside range: %s" % lstr)
        # END: interactively identify lines
        # set up fitting vectors, flux, waves, measure errors
        sf = invsen[wl_good]  # dependent variable
        af = earea[wl_good]  # effective area
        wf = w[wl_good]  # independent variable
        bf = obsspec[wl_good]  # input electrons
        rf = rsflx[wl_good]  # reference flux
        mw = np.ones(nwl_good, dtype=float)  # weights
        use = np.ones(nwl_good, dtype=int)  # toggles for usage
        # loop over Balmer lines
        for il, bl in enumerate(blines):
            roi = [
                i for i, v in enumerate(wf)
                if (bl - bwids[il]) <= v <= (bl + bwids[il])
            ]
            nroi = len(roi)
            if nroi > 0:
                use[roi] = 0
                self.logger.info("Masking line at %.1f +- %.4f (A)" %
                                 (bl, bwids[il]))
        # ignore bad points by setting large errors
        mf = []
        ef = []
        ww = []
        used = []
        not_used = []
        for i in range(len(use)):
            if use[i] == 1:
                used.append(i)
            else:
                mw[i] = 1.e-9
                mf.append(sf[i])
                ef.append(100. * af[i] / area)
                ww.append(wf[i])
                not_used.append(i)

        # initial polynomial fit of inverse sensitivity
        wf0 = np.min(wf)
        res = np.polyfit(wf - wf0, sf, deg=ford, w=mw)
        finvsen = np.polyval(res, w - wf0)
        sinvsen = np.polyval(res, wf - wf0)
        calspec = obsspec * finvsen
        scalspec = bf * sinvsen
        # initial polynomial fit of effective area
        res = np.polyfit(wf - wf0, af, ford, w=mw)
        fearea = np.polyval(res, w - wf0)
        # calculate residuals
        resid = 100.0 * (scalspec - rf) / rf
        if len(not_used) > 0:
            rbad = resid[not_used]
        else:
            rbad = None
        rsd_mean = float(np.nanmean(resid[used]))
        rsd_stdv = float(np.nanstd(resid[used]))
        self.logger.info("Calibration residuals = %f +- %f %%" %
                         (rsd_mean, rsd_stdv))
        # plots
        peff = None
        pivs = None
        pcal = None
        prsd = None
        # interactively adjust fit
        if self.config.instrument.plot_level >= 1:
            done = False
            while not done:
                yran = [np.min(100. * af / area), np.max(100. * af / area)]
                effmax = np.nanmax(100. * fearea / area)
                effmean = np.nanmean(100. * fearea / area)
                peff = figure(title=self.action.args.plotlabel + ' Efficiency',
                              x_axis_label='Wave (A)',
                              y_axis_label='Effective Efficiency (%)',
                              plot_width=self.config.instrument.plot_width,
                              plot_height=self.config.instrument.plot_height)
                peff.line(wf,
                          100. * af / area,
                          line_color='black',
                          legend_label='Data')
                peff.line(w,
                          100. * fearea / area,
                          line_color='red',
                          legend_label='Fit')
                peff.scatter(ww, ef, marker='x', legend_label='Rej')
                peff.line([wlm0, wlm0],
                          yran,
                          line_color='green',
                          legend_label='WL lims')
                peff.line([wlm1, wlm1], yran, line_color='green')
                peff.line([wall0, wall1], [effmax, effmax],
                          line_color='black',
                          line_dash='dashed')
                peff.line([wall0, wall1], [effmean, effmean],
                          line_color='black',
                          line_dash='dashdot')
                set_plot_lims(peff, xlim=[wall0, wall1], ylim=yran)
                bokeh_plot(peff, self.context.bokeh_session)
                if self.config.instrument.plot_level >= 1:
                    input("Next? <cr>: ")
                else:
                    time.sleep(2. * self.config.instrument.plot_pause)

                yran = [np.min(sf), np.max(sf)]
                pivs = figure(title=self.action.args.plotlabel +
                              ' Inverse sensitivity',
                              x_axis_label='Wave (A)',
                              y_axis_label='Invserse Sensitivity (Flux/e-/s)',
                              y_axis_type='log',
                              plot_width=self.config.instrument.plot_width,
                              plot_height=self.config.instrument.plot_height)
                pivs.line(wf, sf, line_color='black', legend_label='Data')
                pivs.line(w, finvsen, line_color='red', legend_label='Fit')
                pivs.scatter(ww, mf, marker='x', legend_label='Rej')
                pivs.line([wlm0, wlm0],
                          yran,
                          line_color='green',
                          legend_label='WL lims')
                pivs.line([wlm1, wlm1], yran, line_color='green')
                set_plot_lims(pivs, xlim=[wall0, wall1], ylim=yran)
                bokeh_plot(pivs, self.context.bokeh_session)
                if self.config.instrument.plot_level >= 1:
                    input("Next? <cr>: ")
                else:
                    time.sleep(2. * self.config.instrument.plot_pause)

                yran = [np.min(calspec[wl_good]), np.max(calspec[wl_good])]
                pcal = figure(title=self.action.args.plotlabel + ' Calibrated',
                              x_axis_label='Wave (A)',
                              y_axis_label='Flux (ergs/s/cm^2/A)',
                              plot_width=self.config.instrument.plot_width,
                              plot_height=self.config.instrument.plot_height)
                pcal.line(w, calspec, line_color='black', legend_label='Obs')
                pcal.line(w, rsflx, line_color='red', legend_label='Ref')
                pcal.line([wlm0, wlm0],
                          yran,
                          line_color='green',
                          legend_label='WL lims')
                pcal.line([wlm1, wlm1], yran, line_color='green')
                set_plot_lims(pcal, xlim=[wall0, wall1], ylim=yran)
                bokeh_plot(pcal, self.context.bokeh_session)
                if self.config.instrument.plot_level >= 1:
                    input("Next? <cr>: ")
                else:
                    time.sleep(2. * self.config.instrument.plot_pause)

                yran = [np.min(resid), np.max(resid)]
                prsd = figure(title=self.action.args.plotlabel +
                              ' Residuals = %.1f +- %.1f (%%)' %
                              (rsd_mean, rsd_stdv),
                              x_axis_label='Wave (A)',
                              y_axis_label='Obs - Ref / Ref (%)',
                              plot_width=self.config.instrument.plot_width,
                              plot_height=self.config.instrument.plot_height)
                prsd.line(wf,
                          resid,
                          line_color='black',
                          legend_label='Obs - Ref (%)')
                if len(not_used) > 0:
                    prsd.scatter(ww, rbad, marker='x', legend_label='Rej')
                prsd.line([wlm0, wlm0],
                          yran,
                          line_color='green',
                          legend_label='WL lims')
                prsd.line([wlm1, wlm1], yran, line_color='green')
                prsd.line([wall0, wall1], [rsd_mean, rsd_mean],
                          line_color='red')
                prsd.line([wall0, wall1],
                          [rsd_mean + rsd_stdv, rsd_mean + rsd_stdv],
                          line_color='black',
                          line_dash='dashed')
                prsd.line([wall0, wall1],
                          [rsd_mean - rsd_stdv, rsd_mean - rsd_stdv],
                          line_color='black',
                          line_dash='dashed')
                set_plot_lims(prsd, xlim=[wall0, wall1], ylim=yran)
                bokeh_plot(prsd, self.context.bokeh_session)
                if self.config.instrument.plot_level >= 1:
                    qstr = input("Current fit order = %d, "
                                 "New fit order? <int>, <cr> - done: " % ford)
                    if len(qstr) <= 0:
                        done = True
                    else:
                        try:
                            ford = int(qstr)
                            # update fit of inverse sensitivity
                            res = np.polyfit(wf - wf0, sf, deg=ford, w=mw)
                            finvsen = np.polyval(res, w - wf0)
                            sinvsen = np.polyval(res, wf - wf0)
                            calspec = obsspec * finvsen
                            scalspec = bf * sinvsen
                            # update polynomial fit of effective area
                            res = np.polyfit(wf - wf0, af, ford, w=mw)
                            fearea = np.polyval(res, w - wf0)
                            # re-calculate residuals
                            resid = 100.0 * (scalspec - rf) / rf
                            if len(not_used) > 0:
                                rbad = resid[not_used]
                            else:
                                rbad = None
                            rsd_mean = float(np.nanmean(resid[used]))
                            rsd_stdv = float(np.nanstd(resid[used]))
                            self.logger.info(
                                "Calibration residuals = %f +- %f %%" %
                                (rsd_mean, rsd_stdv))
                        except ValueError:
                            print("Bad fit order, try again")
                else:
                    done = True
                    time.sleep(2. * self.config.instrument.plot_pause)
            # log results
            effmax = float(np.nanmax(100. * fearea / area))
            effmean = float(np.nanmean(100. * fearea / area))
            self.logger.info("Peak, mean efficiency (%%): %.1f, %.1f" %
                             (effmax, effmean))
            self.logger.info("Fit order = %d" % ford)
            # output plots
            pfname = "std_%05d_%s_%s_%s_%d" % (
                self.action.args.ccddata.header['FRAMENO'], stdname,
                self.action.args.grating.strip(),
                self.action.args.ifuname.strip(), int(self.action.args.cwave))
            # Save plots
            save_plot(peff, filename=pfname + '_eff.png')  # Efficiency
            save_plot(pivs, filename=pfname + '_invsens.png')  # Inv. Sens.
            save_plot(prsd, filename=pfname + '_resid.png')  # Residuals
            save_plot(pcal, filename=pfname + '_cal.png')  # Calibrated

        log_string = MakeInvsens.__module__
        self.action.args.ccddata.header['HISTORY'] = log_string
        self.logger.info(log_string)

        # write out effective inverse sensitivity

        # update inverse sensitivity header
        hdr = self.action.args.ccddata.header.copy()
        hdr['HISTORY'] = log_string
        hdr['INVSENS'] = (True, 'effective inv. sens. spectrum?')
        hdr['INVSW0'] = (w[z0], 'low wavelength for eff. inv. sens.')
        hdr['INVSW1'] = (w[z1], 'high wavelength for eff. inv. sens.')
        hdr['INVSZ0'] = (z0, 'low wave pixel for eff. inv. sens.')
        hdr['INVSZ1'] = (z1, 'high wave pixel for eff. inv. sens.')
        hdr['INVSY0'] = (gy0, 'low spatial pixel for eff. inv. sens.')
        hdr['INVSY1'] = (gy1, 'high spatial pixel for eff. inv. sens.')
        hdr['INVSLMX'] = (mxsl, 'brightest std star slice')
        hdr['INVSL0'] = (sl0, 'lowest std star slice summed')
        hdr['INVSL1'] = (sl1, 'highest std star slice summed')
        hdr['INVSLY'] = (cy, 'spatial pixel position of std within slice')
        hdr['INVFW0'] = (wlm0, 'low wavelength for fits')
        hdr['INVFW1'] = (wlm1, 'high wavelength for fits')
        hdr['INVFORD'] = (ford, 'fit order')
        hdr['EXPTIME'] = (1., 'effective exposure time (seconds)')
        hdr['XPOSURE'] = (1., 'effective exposure time (seconds)')

        # remove old WCS
        del hdr['RADESYS']
        del hdr['EQUINOX']
        del hdr['LONPOLE']
        del hdr['LATPOLE']
        del hdr['NAXIS2']
        if 'NAXIS3' in hdr:
            del hdr['NAXIS3']
        del hdr['CTYPE1']
        del hdr['CTYPE2']
        del hdr['CTYPE3']
        del hdr['CUNIT1']
        del hdr['CUNIT2']
        del hdr['CUNIT3']
        del hdr['CNAME1']
        del hdr['CNAME2']
        del hdr['CNAME3']
        del hdr['CRVAL1']
        del hdr['CRVAL2']
        del hdr['CRVAL3']
        del hdr['CRPIX1']
        del hdr['CRPIX2']
        del hdr['CRPIX3']
        del hdr['CD1_1']
        del hdr['CD1_2']
        del hdr['CD2_1']
        del hdr['CD2_2']
        del hdr['CD3_3']

        # set wavelength axis WCS values
        hdr['WCSDIM'] = 1
        hdr['CTYPE1'] = ('AWAV', 'Air Wavelengths')
        hdr['CUNIT1'] = ('Angstrom', 'Wavelength units')
        hdr['CNAME1'] = ('KCWI INVSENS Wavelength', 'Wavelength name')
        hdr['CRVAL1'] = (w0, 'Wavelength zeropoint')
        hdr['CRPIX1'] = (crpixw, 'Wavelength reference pixel')
        hdr['CDELT1'] = (dw, 'Wavelength Angstroms per pixel')

        ofn = self.action.args.ccddata.header['OFNAME']
        invsname = ofn.split('.fits')[0] + '_' + suffix + '.fits'
        eaname = ofn.split('.fits')[0] + '_ea.fits'

        # set units
        invsens_u = u.erg / (u.angstrom * u.cm**2 * u.s * u.electron)
        # output inverse sensitivity
        out_invsens = CCDData(np.asarray([invsen, finvsen, obsspec]),
                              meta=hdr,
                              unit=invsens_u)
        kcwi_fits_writer(out_invsens,
                         output_file=invsname,
                         output_dir=self.config.instrument.output_directory)
        self.context.proctab.update_proctab(frame=out_invsens,
                                            suffix=suffix,
                                            newtype='INVSENS')
        # output effective area
        ea_u = u.cm**2 / u.angstrom
        out_ea = CCDData(np.asarray([earea, fearea]), meta=hdr, unit=ea_u)
        kcwi_fits_writer(out_ea,
                         output_file=eaname,
                         output_dir=self.config.instrument.output_directory)
        self.context.proctab.update_proctab(frame=out_ea,
                                            suffix='ea',
                                            newtype='EAREA')

        return self.action.args
    def _perform(self):
        """Get atlas line positions for wavelength fitting"""
        self.logger.info("Finding isolated atlas lines")
        # get atlas wavelength range
        # get pixel values (no longer centered in the middle)
        specsz = len(self.context.arcs[self.config.instrument.REFBAR])
        xvals = np.arange(0, specsz)
        # min, max rows, trimming the ends
        minrow = 50
        maxrow = specsz - 50
        # wavelength range
        mnwvs = []
        mxwvs = []
        refbar_disp = 1.
        # Get wavelengths for each bar
        for b in range(self.config.instrument.NBARS):
            waves = np.polyval(self.action.args.twkcoeff[b], xvals)
            mnwvs.append(np.min(waves))
            mxwvs.append(np.max(waves))
            if b == self.config.instrument.REFBAR:
                refbar_disp = self.action.args.twkcoeff[b][-2]
        self.logger.info("Ref bar (%d) dispersion = %.3f Ang/px" %
                         (self.config.instrument.REFBAR, refbar_disp))
        # Get extrema (trim ends a bit)
        minwav = min(mnwvs) + 10.
        maxwav = max(mxwvs) - 10.
        wave_range = maxwav - minwav
        # Do we have a dichroic?
        if self.action.args.dich:
            if self.action.args.camera == 0:  # Blue
                maxwav = min([maxwav, 5620.])
            elif self.action.args.camera == 1:  # Red
                minwav = max([minwav, 5580.])
            else:
                self.logger.error("Camera keyword not defined!")
        dichroic_fraction = (maxwav - minwav) / wave_range
        # Get corresponding atlas range
        minrw = [
            i for i, v in enumerate(self.action.args.refwave) if v >= minwav
        ][0]
        maxrw = [
            i for i, v in enumerate(self.action.args.refwave) if v <= maxwav
        ][-1]
        self.logger.info("Min, Max wave (A): %.2f, %.2f" % (minwav, maxwav))
        if self.action.args.dich:
            self.logger.info("Dichroic fraction: %.3f" % dichroic_fraction)
        # store atlas ranges
        self.action.args.atminrow = minrw
        self.action.args.atmaxrow = maxrw
        self.action.args.atminwave = minwav
        self.action.args.atmaxwave = maxwav
        self.action.args.dichroic_fraction = dichroic_fraction
        # get atlas sub spectrum
        atspec = self.action.args.reflux[minrw:maxrw]
        atwave = self.action.args.refwave[minrw:maxrw]
        # get reference bar arc spectrum, pixel values, and prelim wavelengths
        subxvals = xvals[minrow:maxrow]
        subyvals = self.context.arcs[
            self.config.instrument.REFBAR][minrow:maxrow].copy()
        subwvals = np.polyval(
            self.action.args.twkcoeff[self.config.instrument.REFBAR], subxvals)
        # smooth subyvals
        win = boxcar(3)
        subyvals = sp.signal.convolve(subyvals, win, mode='same') / sum(win)
        # find good peaks in arc spectrum
        smooth_width = 4  # in pixels
        # peak width
        peak_width = int(self.action.args.atsig / abs(refbar_disp))
        if peak_width < 4:
            peak_width = 4
        # slope threshold
        slope_thresh = 0.7 * smooth_width / 2. / 100.
        # slope_thresh = 0.7 * smooth_width / 1000.   # more severe for arc
        # slope_thresh = 0.016 / peak_width
        # get amplitude threshold
        ampl_thresh = 0.
        self.logger.info("Using a peak_width of %d px, a slope_thresh of %.5f "
                         "a smooth_width of %d and an ampl_thresh of %.3f" %
                         (peak_width, slope_thresh, smooth_width, ampl_thresh))
        arc_cent, avwsg, arc_hgt = findpeaks(subwvals, subyvals, smooth_width,
                                             slope_thresh, ampl_thresh,
                                             peak_width)
        avwfwhm = avwsg * 2.354
        self.logger.info("Found %d lines with <sig> = %.3f (A),"
                         " <FWHM> = %.3f (A)" %
                         (len(arc_cent), avwsg, avwfwhm))
        # fitting window based on grating type
        if 'H' in self.action.args.grating or 'M' in self.action.args.grating:
            fwid = avwfwhm
        else:
            fwid = avwsg
        # clean near neighbors
        spec_cent = arc_cent
        spec_hgt = arc_hgt
        #
        # generate an atlas line list
        refws = []  # atlas line wavelength
        refas = []  # atlas line amplitude
        rej_fit_w = []  # fit rejected atlas line wavelength
        rej_fit_y = []  # fit rejected atlas line amplitude
        rej_par_w = []  # par rejected atlas line wavelength
        rej_par_a = []  # par rejected atlas line amplitude
        nrej = 0
        # look at each arc spectrum line
        for i, pk in enumerate(spec_cent):
            if pk <= minwav or pk >= maxwav:
                continue
            # get atlas pixel position corresponding to arc line
            try:
                line_x = [ii for ii, v in enumerate(atwave) if v >= pk][0]
                # get window around atlas line to fit
                minow, maxow, count = get_line_window(atspec, line_x)
            except IndexError:
                count = 0
                minow = None
                maxow = None
                self.logger.warning("line at edge: %d, %.2f, %.f2f" %
                                    (i, pk, max(atwave)))
            # is resulting window large enough for fitting?
            if count < 5 or not minow or not maxow:
                # keep track of fit rejected lines
                rej_fit_w.append(pk)
                rej_fit_y.append(spec_hgt[i])
                nrej += 1
                self.logger.info("Atlas window rejected for line %.3f" % pk)
                continue
            # get data to fit
            yvec = atspec[minow:maxow + 1]
            xvec = atwave[minow:maxow + 1]
            # attempt Gaussian fit
            try:
                fit, _ = curve_fit(gaus, xvec, yvec, p0=[spec_hgt[i], pk, 1.])
            except RuntimeError:
                # keep track of Gaussian fit rejected lines
                rej_fit_w.append(pk)
                rej_fit_y.append(spec_hgt[i])
                nrej += 1
                self.logger.info("Atlas Gaussian fit rejected for line %.3f" %
                                 pk)
                continue
            # get interpolation function of atlas line
            int_line = interpolate.interp1d(xvec,
                                            yvec,
                                            kind='cubic',
                                            bounds_error=False,
                                            fill_value='extrapolate')
            # use very dense pixel sampling
            x_dense = np.linspace(min(xvec), max(xvec), num=1000)
            # resample line with dense sampling
            y_dense = int_line(x_dense)
            # get peak amplitude and wavelength
            pki = y_dense.argmax()
            pkw = x_dense[pki]
            # calculate some diagnostic parameters for the line
            # how many atlas pixels have we moved?
            xoff = abs(pkw - fit[1]) / self.action.args.refdisp
            # what is the wavelength offset in Angstroms?
            woff = abs(pkw - pk)
            # what fraction of the canonical fit width is the line?
            wrat = abs(fit[2]) / fwid  # can be neg or pos
            # current criteria for these diagnostic parameters
            if woff > 5. or xoff > 1.5 or wrat > 1.1:
                # keep track of par rejected atlas lines
                rej_par_w.append(pkw)
                rej_par_a.append(y_dense[pki])
                nrej += 1
                self.logger.info(
                    "Atlas line parameters rejected for line %.3f" % pk)
                self.logger.info("woff = %.3f, xoff = %.2f, wrat = %.3f" %
                                 (woff, xoff, wrat))
                continue
            refws.append(pkw)
            refas.append(y_dense[pki])
        # eliminate faintest lines if we have a large number
        self.logger.info("number of remaining lines: %d" % len(refas))
        if len(refas) > 400:
            # sort on flux
            sf = np.argsort(refas)
            refws = np.asarray(refws)[sf]
            refas = np.asarray(refas)[sf]
            # remove faintest two-thirds
            hlim = int(len(refas) * 0.67)
            refws = refws[hlim:]
            refas = refas[hlim:]
            # sort back onto wavelength
            sw = np.argsort(refws)
            refws = refws[sw].tolist()
            refas = refas[sw].tolist()
        # check if line list was given on command line
        if self.config.instrument.LINELIST:
            with open(self.config.instrument.LINELIST) as llfn:
                atlines = llfn.readlines()
            refws = []
            refas = []
            for line in atlines:
                if '#' in line:
                    continue
                refws.append(float(line.split()[0]))
                refas.append(float(line.split()[1]))
            self.logger.info("Read %d lines from %s" %
                             (len(refws), self.config.instrument.LINELIST))
        else:
            self.logger.info("Using %d generated lines" % len(refws))
        # store wavelengths, fluxes
        self.action.args.at_wave = refws
        self.action.args.at_flux = refas
        # output filename stub
        atfnam = "arc_%05d_%s_%s_%s_atlines" % \
            (self.action.args.ccddata.header['FRAMENO'],
             self.action.args.illum, self.action.args.grating,
             self.action.args.ifuname)
        # output directory
        output_dir = os.path.join(self.config.instrument.cwd,
                                  self.config.instrument.output_directory)
        # write out final atlas line list
        atlines = np.array([refws, refas])
        atlines = atlines.T
        with open(os.path.join(output_dir, atfnam + '.txt'), 'w') as atlfn:
            np.savetxt(atlfn, atlines, fmt=['%12.3f', '%12.3f'])
        # plot final list of Atlas lines and show rejections
        norm_fac = np.nanmax(atspec)
        if self.config.instrument.plot_level >= 1:
            p = figure(title=self.action.args.plotlabel +
                       "ATLAS LINES Ngood = %d, Nrej = %d" %
                       (len(refws), nrej),
                       x_axis_label="Wavelength (A)",
                       y_axis_label="Normalized Flux",
                       plot_width=self.config.instrument.plot_width,
                       plot_height=self.config.instrument.plot_height)
            p.line(subwvals,
                   subyvals / np.nanmax(subyvals),
                   legend_label='RefArc',
                   color='lightgray')
            p.line(atwave,
                   atspec / norm_fac,
                   legend_label='Atlas',
                   color='blue')
            # Rejected: nearby neighbor
            # p.diamond(rej_neigh_w, rej_neigh_y / norm_fac,
            #          legend_label='NeighRej', color='cyan', size=8)
            # Rejected: fit failure
            p.diamond(rej_fit_w,
                      rej_fit_y / norm_fac,
                      legend_label='FitRej',
                      color='red',
                      size=8)
            # Rejected: line parameter outside range
            p.diamond(rej_par_w,
                      rej_par_a / norm_fac,
                      legend_label='ParRej',
                      color='orange',
                      size=8)
            p.diamond(refws,
                      refas / norm_fac,
                      legend_label='Kept',
                      color='green',
                      size=10)
            p.line([minwav, minwav], [-0.1, 1.1],
                   legend_label='WavLim',
                   color='brown')
            p.line([maxwav, maxwav], [-0.1, 1.1], color='brown')
            p.x_range = Range1d(min([min(subwvals), minwav - 10.]),
                                max(subwvals))
            p.y_range = Range1d(-0.04, 1.04)
            bokeh_plot(p, self.context.bokeh_session)
            if self.config.instrument.plot_level >= 2:
                input("Next? <cr>: ")
            else:
                time.sleep(self.config.instrument.plot_pause)
            save_plot(p, filename=atfnam + ".png")
        self.logger.info("Final atlas list has %d lines" % len(refws))

        log_string = GetAtlasLines.__module__
        self.action.args.ccddata.header['HISTORY'] = log_string
        self.logger.info(log_string)

        return self.action.args