#images = glob.glob('./run_track1/*.jpg') images = ['./examples/input_salient_track2_6.jpg'] total = len(images) # Initial call to print 0% progress printProgressBar(0, total, prefix='Progress:', suffix='Complete', length=50) batch_print = 100 for i, path in enumerate(images): image_array = mpimg.imread(path) yuv = cv2.cvtColor(image_array, cv2.COLOR_BGR2YUV) y, u, v = cv2.split(yuv) y = y.reshape(160, 320, -1) filename = path.split('/')[-1] img_predicted = model.predict(y[None, :, :, :], batch_size=1) img_predicted = img_predicted.reshape(img_predicted.shape[1:]) img = ((img_predicted - img_predicted.min()) * 255 / (img_predicted.max() - img_predicted.min())).astype(np.uint8) new = [[[j if j <= 80 else 0, j if j > 80 else 0, 0] for j in i] for i in img] dt = np.dtype('uint8') new = np.array(new, dtype=dt)
cval=0., horizontal_flip=True, vertical_flip=False, rescale=None) test_datagen = ImageDataGenerator(featurewise_center=False, samplewise_center=True, featurewise_std_normalization=False, samplewise_std_normalization=True) if preview_augmentation: # Preview resultant images: img = load_img(train_data_dir + '/mountain/land132.jpg') # this is a PIL image x = img_to_array(img) # this is a Numpy array with shape (3, 150, 150) x = x.reshape( (1, ) + x.shape) # this is a Numpy array with shape (1, 3, 150, 150) i = 0 for batch in train_datagen.flow(x, batch_size=1, save_to_dir='preview', save_prefix='image', save_format='jpeg'): i += 1 if i > 20: break # otherwise the generator would loop indefinitely train_generator = train_datagen.flow_from_directory(train_data_dir, target_size=(img_width, img_height), batch_size=batch_size, class_mode='categorical')