예제 #1
0
def xception(stack_fn,
             model_name='alignedxception',
             include_top=True,
             weights=None,
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000,
             classifier_activation='softmax',
             **kwargs):
    """ Generator for Xception models.
    This function generates a family of Xception models. See the Xception*() methods for specific model instantiations,
    obtained by selecting different block instantiations that produce Xception of various depths.

    Args:
      stack_fn: a function that returns output tensor for the stacked blocks.
      model_name: string, model name.
      include_top: whether to include the fully-connected layer at the top of the network.
      weights: one of `None` (random initialization) or the path to the weights file to be loaded.
      input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) to use as image input for the model.
      input_shape: optional shape tuple, only to be specified if `include_top` is False (otherwise the input shape has
        to be `(299, 299, channels)` with `channels_last` data format
      pooling: optional pooling mode for feature extraction when `include_top` is `False`.
        - `None` means that the output of the model will be the 4D tensor output of the last convolutional layer.
        - `avg` means that global average pooling will be applied to the output of the last convolutional layer, and
          thus the output of the model will be a 2D tensor.
        - `max` means that global max pooling will be applied.
      classes: optional number of classes to classify images into, only to be specified if `include_top` is True, and
        if no `weights` argument is specified.
      classifier_activation: A `str` or callable. The activation function to use on the "top" layer. Ignored unless
        `include_top=True`. Set `classifier_activation=None` to return the logits of the "top" layer.
      **kwargs: For backwards compatibility only.

    Returns:
      A `keras.Model` instance.
    """

    global layers
    if 'layers' in kwargs:
        layers = kwargs.pop('layers')
    else:
        layers = VersionAwareLayers()
    if kwargs:
        raise ValueError('Unknown argument(s): %s' % (kwargs, ))
    if not (weights is None or file_io.file_exists(weights)):
        raise ValueError(
            'The `weights` argument should be `None` (random initialization) or the path to the weights '
            'file to be loaded. Pre-trained weights are unavailable')

    # Determine proper input shape
    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=299,
        min_size=71,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1

    x = conv2d_same(img_input, 32, 3, stride=2, name='entry_flow/conv1_1')
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='entry_flow/conv1_1_bn')(x)
    x = layers.ReLU(name='entry_flow/conv1_1_relu')(x)

    x = conv2d_same(x, 64, 3, stride=1, name='entry_flow/conv1_2')
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='entry_flow/conv1_2_bn')(x)
    x = layers.ReLU(name='entry_flow/conv1_2_relu')(x)

    x = stack_fn(x)

    if include_top:
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        x = layers.Dropout(0.5)(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D(name='max_pool')(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs, x, name=model_name)

    # Load weights.
    if weights is not None:
        model.load_weights(weights)

    return model
예제 #2
0
def MobileNetV2(input_shape=None,
                alpha=1.0,
                include_top=True,
                weights='imagenet',
                input_tensor=None,
                pooling=None,
                classes=1000,
                classifier_activation='softmax',
                **kwargs):
    """Instantiates the MobileNetV2 architecture.

  Reference:
  - [MobileNetV2: Inverted Residuals and Linear Bottlenecks](
      https://arxiv.org/abs/1801.04381) (CVPR 2018)

  Optionally loads weights pre-trained on ImageNet.

  Note: each Keras Application expects a specific kind of input preprocessing.
  For MobileNetV2, call `tf.keras.applications.mobilenet_v2.preprocess_input`
  on your inputs before passing them to the model.

  Args:
    input_shape: Optional shape tuple, to be specified if you would
      like to use a model with an input image resolution that is not
      (224, 224, 3).
      It should have exactly 3 inputs channels (224, 224, 3).
      You can also omit this option if you would like
      to infer input_shape from an input_tensor.
      If you choose to include both input_tensor and input_shape then
      input_shape will be used if they match, if the shapes
      do not match then we will throw an error.
      E.g. `(160, 160, 3)` would be one valid value.
    alpha: Float between 0 and 1. controls the width of the network.
      This is known as the width multiplier in the MobileNetV2 paper,
      but the name is kept for consistency with `applications.MobileNetV1`
      model in Keras.
      - If `alpha` < 1.0, proportionally decreases the number
          of filters in each layer.
      - If `alpha` > 1.0, proportionally increases the number
          of filters in each layer.
      - If `alpha` = 1, default number of filters from the paper
          are used at each layer.
    include_top: Boolean, whether to include the fully-connected
      layer at the top of the network. Defaults to `True`.
    weights: String, one of `None` (random initialization),
      'imagenet' (pre-training on ImageNet),
      or the path to the weights file to be loaded.
    input_tensor: Optional Keras tensor (i.e. output of
      `layers.Input()`)
      to use as image input for the model.
    pooling: String, optional pooling mode for feature extraction
      when `include_top` is `False`.
      - `None` means that the output of the model
          will be the 4D tensor output of the
          last convolutional block.
      - `avg` means that global average pooling
          will be applied to the output of the
          last convolutional block, and thus
          the output of the model will be a
          2D tensor.
      - `max` means that global max pooling will
          be applied.
    classes: Integer, optional number of classes to classify images
      into, only to be specified if `include_top` is True, and
      if no `weights` argument is specified.
    classifier_activation: A `str` or callable. The activation function to use
      on the "top" layer. Ignored unless `include_top=True`. Set
      `classifier_activation=None` to return the logits of the "top" layer.
    **kwargs: For backwards compatibility only.

  Returns:
    A `keras.Model` instance.

  Raises:
    ValueError: in case of invalid argument for `weights`,
      or invalid input shape or invalid alpha, rows when
      weights='imagenet'
    ValueError: if `classifier_activation` is not `softmax` or `None` when
      using a pretrained top layer.
  """
    global layers
    if 'layers' in kwargs:
        layers = kwargs.pop('layers')
    else:
        layers = VersionAwareLayers()
    if kwargs:
        raise ValueError('Unknown argument(s): %s' % (kwargs, ))
    if not (weights in {'imagenet', None} or tf.io.gfile.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top` '
            'as true, `classes` should be 1000')

    # Determine proper input shape and default size.
    # If both input_shape and input_tensor are used, they should match
    if input_shape is not None and input_tensor is not None:
        try:
            is_input_t_tensor = backend.is_keras_tensor(input_tensor)
        except ValueError:
            try:
                is_input_t_tensor = backend.is_keras_tensor(
                    layer_utils.get_source_inputs(input_tensor))
            except ValueError:
                raise ValueError('input_tensor: ', input_tensor,
                                 'is not type input_tensor')
        if is_input_t_tensor:
            if backend.image_data_format() == 'channels_first':
                if backend.int_shape(input_tensor)[1] != input_shape[1]:
                    raise ValueError(
                        'input_shape: ', input_shape, 'and input_tensor: ',
                        input_tensor,
                        'do not meet the same shape requirements')
            else:
                if backend.int_shape(input_tensor)[2] != input_shape[1]:
                    raise ValueError(
                        'input_shape: ', input_shape, 'and input_tensor: ',
                        input_tensor,
                        'do not meet the same shape requirements')
        else:
            raise ValueError('input_tensor specified: ', input_tensor,
                             'is not a keras tensor')

    # If input_shape is None, infer shape from input_tensor
    if input_shape is None and input_tensor is not None:

        try:
            backend.is_keras_tensor(input_tensor)
        except ValueError:
            raise ValueError('input_tensor: ', input_tensor, 'is type: ',
                             type(input_tensor), 'which is not a valid type')

        if input_shape is None and not backend.is_keras_tensor(input_tensor):
            default_size = 224
        elif input_shape is None and backend.is_keras_tensor(input_tensor):
            if backend.image_data_format() == 'channels_first':
                rows = backend.int_shape(input_tensor)[2]
                cols = backend.int_shape(input_tensor)[3]
            else:
                rows = backend.int_shape(input_tensor)[1]
                cols = backend.int_shape(input_tensor)[2]

            if rows == cols and rows in [96, 128, 160, 192, 224]:
                default_size = rows
            else:
                default_size = 224

    # If input_shape is None and no input_tensor
    elif input_shape is None:
        default_size = 224

    # If input_shape is not None, assume default size
    else:
        if backend.image_data_format() == 'channels_first':
            rows = input_shape[1]
            cols = input_shape[2]
        else:
            rows = input_shape[0]
            cols = input_shape[1]

        if rows == cols and rows in [96, 128, 160, 192, 224]:
            default_size = rows
        else:
            default_size = 224

    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=default_size,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights)

    if backend.image_data_format() == 'channels_last':
        row_axis, col_axis = (0, 1)
    else:
        row_axis, col_axis = (1, 2)
    rows = input_shape[row_axis]
    cols = input_shape[col_axis]

    if weights == 'imagenet':
        if alpha not in [0.35, 0.50, 0.75, 1.0, 1.3, 1.4]:
            raise ValueError('If imagenet weights are being loaded, '
                             'alpha can be one of `0.35`, `0.50`, `0.75`, '
                             '`1.0`, `1.3` or `1.4` only.')

        if rows != cols or rows not in [96, 128, 160, 192, 224]:
            rows = 224
            logging.warning('`input_shape` is undefined or non-square, '
                            'or `rows` is not in [96, 128, 160, 192, 224].'
                            ' Weights for input shape (224, 224) will be'
                            ' loaded as the default.')

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1

    first_block_filters = _make_divisible(32 * alpha, 8)
    x = layers.Conv2D(first_block_filters,
                      kernel_size=3,
                      strides=(2, 2),
                      padding='same',
                      use_bias=False,
                      name='Conv1')(img_input)
    x = layers.BatchNormalization(axis=channel_axis,
                                  epsilon=1e-3,
                                  momentum=0.999,
                                  name='bn_Conv1')(x)
    x = layers.ReLU(6., name='Conv1_relu')(x)

    x = _inverted_res_block(x,
                            filters=16,
                            alpha=alpha,
                            stride=1,
                            expansion=1,
                            block_id=0)

    x = _inverted_res_block(x,
                            filters=24,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=1)
    x = _inverted_res_block(x,
                            filters=24,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=2)

    x = _inverted_res_block(x,
                            filters=32,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=3)
    x = _inverted_res_block(x,
                            filters=32,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=4)
    x = _inverted_res_block(x,
                            filters=32,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=5)

    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=6)
    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=7)
    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=8)
    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=9)

    x = _inverted_res_block(x,
                            filters=96,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=10)
    x = _inverted_res_block(x,
                            filters=96,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=11)
    x = _inverted_res_block(x,
                            filters=96,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=12)

    x = _inverted_res_block(x,
                            filters=160,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=13)
    x = _inverted_res_block(x,
                            filters=160,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=14)
    x = _inverted_res_block(x,
                            filters=160,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=15)

    x = _inverted_res_block(x,
                            filters=320,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=16)

    # no alpha applied to last conv as stated in the paper:
    # if the width multiplier is greater than 1 we
    # increase the number of output channels
    if alpha > 1.0:
        last_block_filters = _make_divisible(1280 * alpha, 8)
    else:
        last_block_filters = 1280

    x = layers.Conv2D(last_block_filters,
                      kernel_size=1,
                      use_bias=False,
                      name='Conv_1')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  epsilon=1e-3,
                                  momentum=0.999,
                                  name='Conv_1_bn')(x)
    x = layers.ReLU(6., name='out_relu')(x)

    if include_top:
        x = layers.GlobalAveragePooling2D()(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name='predictions')(x)

    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs,
                           x,
                           name='mobilenetv2_%0.2f_%s' % (alpha, rows))

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
                          str(alpha) + '_' + str(rows) + '.h5')
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = data_utils.get_file(model_name,
                                               weight_path,
                                               cache_subdir='models')
        else:
            model_name = ('mobilenet_v2_weights_tf_dim_ordering_tf_kernels_' +
                          str(alpha) + '_' + str(rows) + '_no_top' + '.h5')
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = data_utils.get_file(model_name,
                                               weight_path,
                                               cache_subdir='models')
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
예제 #3
0
def MobileNetV2(
    input_shape=None,
    alpha=1.0,
    include_top=True,
    weights="imagenet",
    input_tensor=None,
    pooling=None,
    classes=1000,
    classifier_activation="softmax",
    **kwargs,
):
    """Instantiates the MobileNetV2 architecture.

    MobileNetV2 is very similar to the original MobileNet,
    except that it uses inverted residual blocks with
    bottlenecking features. It has a drastically lower
    parameter count than the original MobileNet.
    MobileNets support any input size greater
    than 32 x 32, with larger image sizes
    offering better performance.

    Reference:
    - [MobileNetV2: Inverted Residuals and Linear Bottlenecks](
        https://arxiv.org/abs/1801.04381) (CVPR 2018)

    This function returns a Keras image classification model,
    optionally loaded with weights pre-trained on ImageNet.

    For image classification use cases, see
    [this page for detailed examples](
      https://keras.io/api/applications/#usage-examples-for-image-classification-models).

    For transfer learning use cases, make sure to read the
    [guide to transfer learning & fine-tuning](
      https://keras.io/guides/transfer_learning/).

    Note: each Keras Application expects a specific kind of input preprocessing.
    For MobileNetV2, call `tf.keras.applications.mobilenet_v2.preprocess_input`
    on your inputs before passing them to the model.
    `mobilenet_v2.preprocess_input` will scale input pixels between -1 and 1.

    Args:
      input_shape: Optional shape tuple, to be specified if you would
        like to use a model with an input image resolution that is not
        (224, 224, 3).
        It should have exactly 3 inputs channels (224, 224, 3).
        You can also omit this option if you would like
        to infer input_shape from an input_tensor.
        If you choose to include both input_tensor and input_shape then
        input_shape will be used if they match, if the shapes
        do not match then we will throw an error.
        E.g. `(160, 160, 3)` would be one valid value.
      alpha: Float, larger than zero, controls the width of the network. This is
        known as the width multiplier in the MobileNetV2 paper, but the name is
        kept for consistency with `applications.MobileNetV1` model in Keras.
        - If `alpha` < 1.0, proportionally decreases the number
            of filters in each layer.
        - If `alpha` > 1.0, proportionally increases the number
            of filters in each layer.
        - If `alpha` = 1.0, default number of filters from the paper
            are used at each layer.
      include_top: Boolean, whether to include the fully-connected layer at the
        top of the network. Defaults to `True`.
      weights: String, one of `None` (random initialization), 'imagenet'
        (pre-training on ImageNet), or the path to the weights file to be
        loaded.
      input_tensor: Optional Keras tensor (i.e. output of `layers.Input()`)
        to use as image input for the model.
      pooling: String, optional pooling mode for feature extraction when
        `include_top` is `False`.
        - `None` means that the output of the model
            will be the 4D tensor output of the
            last convolutional block.
        - `avg` means that global average pooling
            will be applied to the output of the
            last convolutional block, and thus
            the output of the model will be a
            2D tensor.
        - `max` means that global max pooling will
            be applied.
      classes: Optional integer number of classes to classify images into, only
        to be specified if `include_top` is True, and if no `weights` argument
        is specified.
      classifier_activation: A `str` or callable. The activation function to use
        on the "top" layer. Ignored unless `include_top=True`. Set
        `classifier_activation=None` to return the logits of the "top" layer.
        When loading pretrained weights, `classifier_activation` can only
        be `None` or `"softmax"`.
      **kwargs: For backwards compatibility only.

    Returns:
      A `keras.Model` instance.
    """
    global layers
    if "layers" in kwargs:
        layers = kwargs.pop("layers")
    else:
        layers = VersionAwareLayers()
    if kwargs:
        raise ValueError(f"Unknown argument(s): {kwargs}")
    if not (weights in {"imagenet", None} or tf.io.gfile.exists(weights)):
        raise ValueError("The `weights` argument should be either "
                         "`None` (random initialization), `imagenet` "
                         "(pre-training on ImageNet), "
                         "or the path to the weights file to be loaded.  "
                         f"Received `weights={weights}`")

    if weights == "imagenet" and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top` '
            f"as true, `classes` should be 1000. Received `classes={classes}`")

    # Determine proper input shape and default size.
    # If both input_shape and input_tensor are used, they should match
    if input_shape is not None and input_tensor is not None:
        try:
            is_input_t_tensor = backend.is_keras_tensor(input_tensor)
        except ValueError:
            try:
                is_input_t_tensor = backend.is_keras_tensor(
                    layer_utils.get_source_inputs(input_tensor))
            except ValueError:
                raise ValueError(
                    f"input_tensor: {input_tensor}"
                    "is not type input_tensor. "
                    f"Received `type(input_tensor)={type(input_tensor)}`")
        if is_input_t_tensor:
            if backend.image_data_format() == "channels_first":
                if backend.int_shape(input_tensor)[1] != input_shape[1]:
                    raise ValueError(
                        "input_shape[1] must equal shape(input_tensor)[1] "
                        "when `image_data_format` is `channels_first`; "
                        "Received `input_tensor.shape="
                        f"{input_tensor.shape}`"
                        f", `input_shape={input_shape}`")
            else:
                if backend.int_shape(input_tensor)[2] != input_shape[1]:
                    raise ValueError(
                        "input_tensor.shape[2] must equal input_shape[1]; "
                        "Received `input_tensor.shape="
                        f"{input_tensor.shape}`, "
                        f"`input_shape={input_shape}`")
        else:
            raise ValueError("input_tensor is not a Keras tensor; "
                             f"Received `input_tensor={input_tensor}`")

    # If input_shape is None, infer shape from input_tensor.
    if input_shape is None and input_tensor is not None:

        try:
            backend.is_keras_tensor(input_tensor)
        except ValueError:
            raise ValueError(
                "input_tensor must be a valid Keras tensor type; "
                f"Received {input_tensor} of type {type(input_tensor)}")

        if input_shape is None and not backend.is_keras_tensor(input_tensor):
            default_size = 224
        elif input_shape is None and backend.is_keras_tensor(input_tensor):
            if backend.image_data_format() == "channels_first":
                rows = backend.int_shape(input_tensor)[2]
                cols = backend.int_shape(input_tensor)[3]
            else:
                rows = backend.int_shape(input_tensor)[1]
                cols = backend.int_shape(input_tensor)[2]

            if rows == cols and rows in [96, 128, 160, 192, 224]:
                default_size = rows
            else:
                default_size = 224

    # If input_shape is None and no input_tensor
    elif input_shape is None:
        default_size = 224

    # If input_shape is not None, assume default size.
    else:
        if backend.image_data_format() == "channels_first":
            rows = input_shape[1]
            cols = input_shape[2]
        else:
            rows = input_shape[0]
            cols = input_shape[1]

        if rows == cols and rows in [96, 128, 160, 192, 224]:
            default_size = rows
        else:
            default_size = 224

    input_shape = imagenet_utils.obtain_input_shape(
        input_shape,
        default_size=default_size,
        min_size=32,
        data_format=backend.image_data_format(),
        require_flatten=include_top,
        weights=weights,
    )

    if backend.image_data_format() == "channels_last":
        row_axis, col_axis = (0, 1)
    else:
        row_axis, col_axis = (1, 2)
    rows = input_shape[row_axis]
    cols = input_shape[col_axis]

    if weights == "imagenet":
        if alpha not in [0.35, 0.50, 0.75, 1.0, 1.3, 1.4]:
            raise ValueError("If imagenet weights are being loaded, "
                             "alpha must be one of `0.35`, `0.50`, `0.75`, "
                             "`1.0`, `1.3` or `1.4` only;"
                             f" Received `alpha={alpha}`")

        if rows != cols or rows not in [96, 128, 160, 192, 224]:
            rows = 224
            logging.warning("`input_shape` is undefined or non-square, "
                            "or `rows` is not in [96, 128, 160, 192, 224]. "
                            "Weights for input shape (224, 224) will be "
                            "loaded as the default.")

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    channel_axis = 1 if backend.image_data_format() == "channels_first" else -1

    first_block_filters = _make_divisible(32 * alpha, 8)
    x = layers.Conv2D(
        first_block_filters,
        kernel_size=3,
        strides=(2, 2),
        padding="same",
        use_bias=False,
        name="Conv1",
    )(img_input)
    x = layers.BatchNormalization(axis=channel_axis,
                                  epsilon=1e-3,
                                  momentum=0.999,
                                  name="bn_Conv1")(x)
    x = layers.ReLU(6.0, name="Conv1_relu")(x)

    x = _inverted_res_block(x,
                            filters=16,
                            alpha=alpha,
                            stride=1,
                            expansion=1,
                            block_id=0)

    x = _inverted_res_block(x,
                            filters=24,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=1)
    x = _inverted_res_block(x,
                            filters=24,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=2)

    x = _inverted_res_block(x,
                            filters=32,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=3)
    x = _inverted_res_block(x,
                            filters=32,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=4)
    x = _inverted_res_block(x,
                            filters=32,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=5)

    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=6)
    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=7)
    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=8)
    x = _inverted_res_block(x,
                            filters=64,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=9)

    x = _inverted_res_block(x,
                            filters=96,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=10)
    x = _inverted_res_block(x,
                            filters=96,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=11)
    x = _inverted_res_block(x,
                            filters=96,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=12)

    x = _inverted_res_block(x,
                            filters=160,
                            alpha=alpha,
                            stride=2,
                            expansion=6,
                            block_id=13)
    x = _inverted_res_block(x,
                            filters=160,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=14)
    x = _inverted_res_block(x,
                            filters=160,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=15)

    x = _inverted_res_block(x,
                            filters=320,
                            alpha=alpha,
                            stride=1,
                            expansion=6,
                            block_id=16)

    # no alpha applied to last conv as stated in the paper:
    # if the width multiplier is greater than 1 we increase the number of output
    # channels.
    if alpha > 1.0:
        last_block_filters = _make_divisible(1280 * alpha, 8)
    else:
        last_block_filters = 1280

    x = layers.Conv2D(last_block_filters,
                      kernel_size=1,
                      use_bias=False,
                      name="Conv_1")(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  epsilon=1e-3,
                                  momentum=0.999,
                                  name="Conv_1_bn")(x)
    x = layers.ReLU(6.0, name="out_relu")(x)

    if include_top:
        x = layers.GlobalAveragePooling2D()(x)
        imagenet_utils.validate_activation(classifier_activation, weights)
        x = layers.Dense(classes,
                         activation=classifier_activation,
                         name="predictions")(x)

    else:
        if pooling == "avg":
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == "max":
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account any potential predecessors of
    # `input_tensor`.
    if input_tensor is not None:
        inputs = layer_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    model = training.Model(inputs,
                           x,
                           name="mobilenetv2_%0.2f_%s" % (alpha, rows))

    # Load weights.
    if weights == "imagenet":
        if include_top:
            model_name = ("mobilenet_v2_weights_tf_dim_ordering_tf_kernels_" +
                          str(float(alpha)) + "_" + str(rows) + ".h5")
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = data_utils.get_file(model_name,
                                               weight_path,
                                               cache_subdir="models")
        else:
            model_name = ("mobilenet_v2_weights_tf_dim_ordering_tf_kernels_" +
                          str(float(alpha)) + "_" + str(rows) + "_no_top" +
                          ".h5")
            weight_path = BASE_WEIGHT_PATH + model_name
            weights_path = data_utils.get_file(model_name,
                                               weight_path,
                                               cache_subdir="models")
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model