예제 #1
0
def run_inference(self, inference_id):

    inference_obj = Inference.objects.get(id=inference_id)
    inference_obj.task_id = self.request.id
    inference_obj.save()

    self.update_state(state='image preprocessing', meta={'progress': 0})
    img = image.load_img(inference_obj.image.file.filename,
                         target_size=(150, 150))
    img_array = image.image_to_array(img)
    img_array.shape = (1, 150, 150, 3)

    self.update_state(state='load the model', meta={'progress': 25})

    with open('./model_architecture.json', 'r') as f:
        model = model_from_json(f.read())
    model.load_weights('./model_weights.h5')

    self.update_state(state='predict the image', meta={'progress': 50})
    prediction = model.predict(img_array, verbose=1)
    result = 'unknown'
    if prediction < 0.5:
        result = 'Normal'
    elif prediction > 0.5:
        result = 'Pneumonia'
    inference_obj.result = result
    inference_obj.save()

    self.update_state(state='Finished', meta={'progress': 100})
    'haarcascade_frontalface_default.xml')

cap=cv2.VideoCapture(0)

while True:
    test_image=cap.read()

    coverted_image= cv2.cvtColor(test_image, cv2.COLOR_BGR2GRAY)


    faces_detected = face_haar_cascade.detectMultiScale(converted_image)
    for (x,y,w,h) in faces_detected:
      cv2.rectangle(test_image,(x,y), (x+w,y+h), (255,0,0))
      roi_gray=gray_image[y:y+w,x:x+h]
      roi_gray=cv2.resize(roi_gray,(48,48))
      image_pixels = image.image_to_array(roi_gray)
      image_pixels = np.expand_dims(image_pixels, axis = 0)
      image_pixels /= 255


    predictions = model.predict(image_pixels)
    max_index = np.argmax(predictions[0])

    emotion_detection = ('angry', 'disgust', 'fear', 
                         'happy', 'sad', 'surprise', 'neutral')
    emotion_prediction = emotion_detection[max_index]


    cv2.putText(test_image, emotion_prediction, (int(x), int(y)))
    cv2.putText(frame,label,label_position,cv2.FONT_HERSHEY_SIMPLEX,2,(0,255,0),3)  
예제 #3
0
                                                     target_size=(64, 64),
                                                     batch_size=batch,
                                                     class_mode='binary')

    test_set = test_datagen.flow_from_directory('../dataset/test_set',
                                                target_size=(64, 64),
                                                batch_size=batch,
                                                class_mode='binary')

    classifier.fit_generator(training_set,
                             steps_per_epoch=(8000 / batch),
                             epochs=25,
                             validation_data=test_set,
                             validation_steps=(2000 / batch))

    elapsed = time.time() - start
    print("Elapsed: %f seconds", elapsed)

    from keras.models import load_model
    classifier.save('cat_or_dog_220batch.h5')

    from keras.preprocessing import image
    import numpy as np
    prediction_image = image.load_img(
        './dataset/single_prediction/cat_or_dog_3.jpg')
    prediction_image = image.image_to_array(prediction_image)
    prediction_image = np.expand_dims(prediction_image, axis=0)

    prediction_image = prediction_image.reshape(64, 64, 3)

    print(new_prediction)
예제 #4
0
파일: xray.py 프로젝트: Yash0150/CoviDoc-ML
import os
import numpy as np
import matplotlib.pyplot as plt
import keras
from keras.layers import *
from keras.models import *
from keras.preprocessing import image

BASE_DIR = os.path.dirname(os.path.abspath(__file__))

model = load_model(os.path.join(BASE_DIR, 'model.h5'))

img = image.load_image('image.jpeg', target_size=(224, 224))
img = image.image_to_array(img)
img = np.expand_dims(img, axis=0)
p = model.predict_classes(img)
print(p)