def main(_): dataset = Dataset_Youtube8M(dataset_dir=FLAGS.data_dir, normalization=False, using_existing_features=False, flag=FLAGS) K.clear_session() learner = LearnerLSTMReg(dataset=dataset, learner_name='LSTMReg', flag=FLAGS) # evaluator = Evaluator_AVEC2016() learner.learn() truth, prediction = learner.predict()
predict_yaml_test, delimiter=",", fmt="%.3f") np.savetxt("predict_yaml_train_classes.csv", predict_yaml_train_classes, delimiter=",", fmt="%d") np.savetxt("predict_yaml_test_classes.csv", predict_yaml_test_classes, delimiter=",", fmt="%d") return history # This is also added for candle compliance so that the program can # still be executed independently from the command line. def main(): gParameters = initialize_parameters() run(gParameters) if __name__ == '__main__': main() try: ke.clear_session() except AttributeError: # theano does not have this function pass
train, labels = make_moons(n_samples=1000, noise=0.4, random_state=1) train_x, test, label_x, label = train_test_split(train, labels, test_size=0.3, random_state=101) train_x.shape test.shape plt.scatter(train_x[:, 0], train_x[:, 1], c=label_x.flatten(), edgecolors='b') plt.show() x_min plt.contourf(train_x[:, 0], train[:, 1], c=label_x) plt.show() k.clear_session() model = Sequential() model.add(l.Dense(10, activation=l.activations.relu, input_dim=2)) model.add(l.Dropout(.2)) model.add(l.Dense(8, activation=l.activations.tanh)) model.add(l.Dropout(0.2)) model.add(l.Dense(10)) model.add(l.Dropout(.2)) model.add(l.Activation('relu')) model.add(l.Dense(1, activation=l.activations.sigmoid)) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) model.summary() model.fit(x=train_x, y=label_x, batch_size=64, epochs=1000) model.evaluate(train_x, label_x)
X_train = np.reshape(X_train, (X_train.shape[0], X_train.shape[1], 1)) X_test = np.reshape(X_test, (X_test.shape[0], X_test.shape[1], 1)) model = Sequential() model.add(LSTM(50, input_shape=(X_train.shape[1], X_train.shape[2]))) model.add(Dense(1)) model.compile(loss='mae', optimizer='adam') # fit network history = model.fit(X_train, y_train, epochs=200, batch_size=50, validation_data=(X_test, y_test), verbose=0, shuffle=False) testPredict = model.predict(X_test) pred_vec = np.append(pred_vec,testPredict) K.clear_session() # plot history true_vec = y[1:1384,] def rmse(pred_vec, true_vec): return np.sqrt(((pred_vec - true_vec) ** 2).mean()) rmse_val = rmse(np.array(pred_vec), np.array(true_vec)) print("rms error is: " + str(rmse_val)) # visually inspect results (requires matplotlib) #rpca.plot_fit()
import numpy as np import keras from keras.models import load_model from keras.models import Sequential from keras.layers import Dense, Dropout, Flatten from keras.layers import Conv2D from keras.optimizers import Adam from keras.layers import MaxPooling2D RCP_dict = {0: "Rock", 1: "Paper", 2: "Scissors"} cap = cv2.VideoCapture(0) model = load_model('RockPaperScissors.h5') while True: keras.clear_session() ret, frame = cap.read() if not ret: break #frame=frame.resize(1,300,200,3) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) cropped_img = np.expand_dims(cv2.resize(gray, (200, 300)), -1) rr = gray.resize(300, 200, 3) prediction = model.predict(rr, steps=1) #maxindex = np.argmax(prediction) print(prediction) #cv2.putText(frame, prediction, (40+20, 120-60), 1, (255, 255, 255), 2, cv2.LINE_AA) objects = (['Rock', 'Paper', 'Scissors']) index = np.arange(len(objects))