def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] t = K.cast(self.iterations, K.floatx()) + 1 lr = K.switch( t <= self.warmup_steps, self.lr * (t / self.warmup_steps), self.lr * (1.0 - K.minimum(t, self.decay_steps) / self.decay_steps), ) lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t))) ms = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] vs = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] if self.amsgrad: vhats = [K.zeros(K.int_shape(p), dtype=K.dtype(p)) for p in params] else: vhats = [K.zeros(1) for _ in params] self.weights = [self.iterations] + ms + vs + vhats for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats): m_t = (self.beta_1 * m) + (1. - self.beta_1) * g v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g) if self.amsgrad: vhat_t = K.maximum(vhat, v_t) p_t = m_t / (K.sqrt(vhat_t) + self.epsilon) self.updates.append(K.update(vhat, vhat_t)) else: p_t = m_t / (K.sqrt(v_t) + self.epsilon) if self.initial_weight_decay > 0.0: if self.weight_decay_pattern is None: p_t += self.weight_decay * p else: for pattern in self.weight_decay_pattern: if pattern in p.name: p_t += self.weight_decay * p break p_t = p - lr_t * p_t self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) new_p = p_t if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates
def call(self, inputs, **kwargs): if self.mode == self.MODE_EXPAND: if K.dtype(inputs) != 'int32': inputs = K.cast(inputs, 'int32') return K.gather( self.embeddings, K.minimum(K.maximum(inputs, -self.input_dim), self.input_dim) + self.input_dim, ) input_shape = K.shape(inputs) if self.mode == self.MODE_ADD: batch_size, seq_len, output_dim = input_shape[0], input_shape[ 1], input_shape[2] else: batch_size, seq_len, output_dim = input_shape[0], input_shape[ 1], self.output_dim pos_embeddings = K.tile( K.expand_dims(self.embeddings[:seq_len, :self.output_dim], axis=0), K.stack([batch_size, 1, 1]), ) if self.mode == self.MODE_ADD: return inputs + pos_embeddings return K.concatenate([inputs, pos_embeddings], axis=-1)
def get_updates(self, loss, params): grads = self.get_gradients(loss, params) self.updates = [K.update_add(self.iterations, 1)] t = K.cast(self.iterations, K.floatx()) + 1 lr = K.switch( t <= self.warmup_steps, self.lr * (t / self.warmup_steps), self.min_lr + (self.lr - self.min_lr) * (1.0 - K.minimum(t, self.decay_steps) / self.decay_steps), ) lr_t = lr * (K.sqrt(1. - K.pow(self.beta_2, t)) / (1. - K.pow(self.beta_1, t))) ms = [ K.zeros(K.int_shape(p), dtype=K.dtype(p), name='m_{}'.format(i)) for i, p in enumerate(params) ] vs = [ K.zeros(K.int_shape(p), dtype=K.dtype(p), name='v_{}'.format(i)) for i, p in enumerate(params) ] if self.amsgrad: vhats = [ K.zeros(K.int_shape(p), dtype=K.dtype(p), name='vh_{}'.format(i)) for i, p in enumerate(params) ] else: vhats = [ K.zeros(1, dtype=K.dtype(p), name='vh_{}'.format(i)) for i, p in enumerate(params) ] self.weights = [self.iterations] + ms + vs + vhats for p, g, m, v, vhat in zip(params, grads, ms, vs, vhats): m_t = (self.beta_1 * m) + (1. - self.beta_1) * g v_t = (self.beta_2 * v) + (1. - self.beta_2) * K.square(g) if self.amsgrad: vhat_t = K.maximum(vhat, v_t) p_t = m_t / (K.sqrt(vhat_t) + self.epsilon) self.updates.append(K.update(vhat, vhat_t)) else: p_t = m_t / (K.sqrt(v_t) + self.epsilon) if self.initial_weight_decay > 0.0: if self.weight_decay_pattern is None: p_t += self.weight_decay * p else: for pattern in self.weight_decay_pattern: if pattern in p.name: p_t += self.weight_decay * p break mult_lr_t = lr_t if self.lr_mult is not None: key = p.name.split('/') if key[0] in self.lr_mult: #print ("going in params : ", p.name, self.lr_mult[key[0]], K.eval(lr_t)) mult_lr_t *= self.lr_mult[key[0]] p_t = p - mult_lr_t * p_t self.updates.append(K.update(m, m_t)) self.updates.append(K.update(v, v_t)) new_p = p_t if getattr(p, 'constraint', None) is not None: new_p = p.constraint(new_p) self.updates.append(K.update(p, new_p)) return self.updates