예제 #1
0
def pred_tet(path_hyper_parameter=path_hyper_parameters,
             path_test=None,
             rate=1.0):
    # 测试集的准确率
    hyper_parameters = load_json(path_hyper_parameter)
    if path_test:  # 从外部引入测试数据地址
        hyper_parameters['data']['val_data'] = path_test
    time_start = time.time()
    # graph初始化
    graph = Graph(hyper_parameters)
    print("graph init ok!")
    graph.load_model()
    print("graph load ok!")
    ra_ed = graph.word_embedding
    # 数据预处理
    pt = PreprocessText(path_model_dir)
    y, x = read_and_process(hyper_parameters['data']['val_data'])
    # 取该数据集的百分之几的语料测试
    len_rate = int(len(y) * rate)
    x = x[1:len_rate]
    y = y[1:len_rate]
    y_pred = []
    count = 0
    for x_one in x:
        count += 1
        ques_embed = ra_ed.sentence2idx(x_one)
        if hyper_parameters['embedding_type'] in ['bert',
                                                  'albert']:  # bert数据处理, token
            x_val_1 = np.array([ques_embed[0]])
            x_val_2 = np.array([ques_embed[1]])
            x_val = [x_val_1, x_val_2]
        else:
            x_val = ques_embed
        # 预测
        pred = graph.predict(x_val)
        pre = pt.prereocess_idx(pred[0])
        label_pred = pre[0][0][0]
        if count % 1000 == 0:
            print(label_pred)
        y_pred.append(label_pred)

    print("data pred ok!")
    # 预测结果转为int类型
    index_y = [pt.l2i_i2l['l2i'][i] for i in y]
    index_pred = [pt.l2i_i2l['l2i'][i] for i in y_pred]
    target_names = [
        pt.l2i_i2l['i2l'][str(i)] for i in list(set((index_pred + index_y)))
    ]
    # 评估
    report_predict = classification_report(index_y,
                                           index_pred,
                                           target_names=target_names,
                                           digits=9)
    print(report_predict)
    print("耗时:" + str(time.time() - time_start))
예제 #2
0
def pred_input(path_hyper_parameter=path_hyper_parameters):
    # 输入预测
    # 加载超参数
    hyper_parameters = load_json(path_hyper_parameter)
    pt = PreprocessText()
    # 模式初始化和加载
    graph = Graph(hyper_parameters)
    graph.load_model()
    ra_ed = graph.word_embedding
    ques = '我要打王者荣耀'
    # str to token
    ques_embed = ra_ed.sentence2idx(ques)
    if hyper_parameters['embedding_type'] == 'bert':
        x_val_1 = np.array([ques_embed[0]])
        x_val_2 = np.array([ques_embed[1]])
        x_val = [x_val_1, x_val_2]
    else:
        x_val = ques_embed
    # 预测
    pred = graph.predict(x_val)
    # 取id to label and pred
    pre = pt.prereocess_idx(pred[0])
    print(pre)
    while True:
        print("请输入: ")
        ques = input()
        ques_embed = ra_ed.sentence2idx(ques)
        print(ques_embed)
        if hyper_parameters['embedding_type'] == 'bert':
            x_val_1 = np.array([ques_embed[0]])
            x_val_2 = np.array([ques_embed[1]])
            x_val = [x_val_1, x_val_2]
        else:
            x_val = ques_embed
        pred = graph.predict(x_val)
        pre = pt.prereocess_idx(pred[0])
        print(pre)
예제 #3
0
def train(hyper_parameters=None, rate=1.0):
    """
        训练函数
    :param hyper_parameters: json, 超参数
    :param rate: 比率, 抽出rate比率语料取训练
    :return: None
    """
    if not hyper_parameters:
        hyper_parameters = {
            'len_max': 50,  # 句子最大长度, 固定 推荐20-50
            'embed_size': 300,  # 字/词向量维度
            'vocab_size': 20000,  # 这里随便填的,会根据代码里修改
            'trainable': True,  # embedding是静态的还是动态的, 即控制可不可以微调
            'level_type': 'char',  # 级别, 最小单元, 字/词, 填 'char' or 'word'
            'embedding_type':
            'random',  # 级别, 嵌入类型, 还可以填'xlnet'、'random'、 'bert'、 'albert' or 'word2vec"
            'gpu_memory_fraction': 0.66,  #gpu使用率
            'model': {
                'label':
                17,  # 类别数
                'batch_size':
                32,  # 批处理尺寸, 感觉原则上越大越好,尤其是样本不均衡的时候, batch_size设置影响比较大
                'filters': [2, 3, 4, 5],  # 卷积核尺寸
                'filters_num':
                300,  # 卷积个数 text-cnn:300-600
                'channel_size':
                1,  # CNN通道数
                'dropout':
                0.5,  # 随机失活, 概率
                'decay_step':
                100,  # 学习率衰减step, 每N个step衰减一次
                'decay_rate':
                0.9,  # 学习率衰减系数, 乘法
                'epochs':
                20,  # 训练最大轮次
                'patience':
                3,  # 早停,2-3就好
                'lr':
                1e-3,  # 学习率, 对训练会有比较大的影响, 如果准确率一直上不去,可以考虑调这个参数
                'l2':
                1e-9,  # l2正则化
                'activate_classify':
                'softmax',  # 最后一个layer, 即分类激活函数
                'loss':
                'categorical_crossentropy',  # 损失函数
                'metrics':
                'accuracy',  # 保存更好模型的评价标准
                'is_training':
                True,  # 训练后者是测试模型
                'model_path':
                path_model,
                # 模型地址, loss降低则保存的依据, save_best_only=True, save_weights_only=True
                'path_hyper_parameters':
                path_hyper_parameters,  # 模型(包括embedding),超参数地址,
                'path_fineture':
                path_fineture,  # 保存embedding trainable地址, 例如字向量、词向量、bert向量等
                # only charCNN_kim
                'char_cnn_layers':
                [[50, 1], [100, 2], [150, 3], [200, 4], [200, 5], [200, 6],
                 [200, 7]
                 ],  # [[25, 1], [50, 2], [75, 3], [100, 4], [125, 5], [150, 6]])  # small
                'highway_layers':
                2,  # highway_layers个数
                'num_rnn_layers':
                2,  # num_rnn_layers个数
                'rnn_type':
                'LSTM',  # rnn_type类型
                'rnn_units':
                650,  # RNN隐藏层, large is 650, small is 300
                'len_max_word':
                30,  # 最大词语长度,
            },
            'embedding': {
                'layer_indexes': [12],  # bert取的层数,
                # 'corpus_path': '',     # embedding预训练数据地址,不配则会默认取conf里边默认的地址, keras-bert可以加载谷歌版bert,百度版ernie(需转换,https://github.com/ArthurRizar/tensorflow_ernie),哈工大版bert-wwm(tf框架,https://github.com/ymcui/Chinese-BERT-wwm)
            },
            'data': {
                'train_data': path_baidu_qa_2019_train,  # 训练数据
                'val_data': path_baidu_qa_2019_valid  # 验证数据
            },
        }

    # 删除先前存在的模型\embedding微调模型等
    delete_file(path_model_dir)
    time_start = time.time()
    # graph初始化
    graph = Graph(hyper_parameters)
    print("graph init ok!")
    ra_ed = graph.word_embedding
    # 数据预处理
    pt = PreprocessText()
    x_train, y_train = pt.preprocess_label_ques_to_idx(
        hyper_parameters['embedding_type'],
        hyper_parameters['data']['train_data'],
        ra_ed,
        rate=rate,
        shuffle=True)
    x_val, y_val = pt.preprocess_label_ques_to_idx(
        hyper_parameters['embedding_type'],
        hyper_parameters['data']['val_data'],
        ra_ed,
        rate=rate,
        shuffle=True)
    print("data propress ok!")
    print(len(y_train))
    # 训练
    graph.fit(x_train, y_train, x_val, y_val)
    print("耗时:" + str(time.time() - time_start))
예제 #4
0
            'GRU',  # type of rnn, select 'LSTM', 'GRU', 'CuDNNGRU', 'CuDNNLSTM', 'Bidirectional-LSTM', 'Bidirectional-GRU'
            'rnn_units':
            650,  # large 650, small is 300
            'len_max_word':
            26,
        },
        'embedding': {
            'embedding_type': 'random',
            'corpus_path': path_embedding_random_char,
            'level_type': 'char',
            'embed_size': 30,
            'len_max': 50,
            'len_max_word': 26
        },
    }
    graph = Graph(hyper_parameters)
    ra_ed = graph.word_embedding
    pt = PreprocessText()
    x_train, y_train = pt.preprocess_baidu_qa_2019_idx(
        path_baidu_qa_2019_train, ra_ed)
    x_val, y_val = pt.preprocess_baidu_qa_2019_idx(path_baidu_qa_2019_valid,
                                                   ra_ed)
    indexs = [ids for ids in range(len(y_train))]
    random.shuffle(indexs)
    x_train, y_train = x_train[indexs], y_train[indexs]

    print(len(y_train))
    graph.fit(x_train[0:32000], y_train[0:32000], x_val, y_val)

# 1425170/1425170 [==============================] - 6498s 5ms/step - loss: 1.3809 - acc: 0.7042 - val_loss: 0.8345 - val_acc: 0.7534
# Epoch 00001: val_loss improved from inf to 0.83452, saving model to /home/ap/nlp/myzhuo/ClassificationTextChinese/data/model/fast_text/model_fast_text.f5