def from_config(cls, config): config["pretraining"] = hyperparameters.deserialize(config["pretraining"]) config["dropout"] = hyperparameters.deserialize(config["dropout"]) config["embedding_dim"] = hyperparameters.deserialize( config["embedding_dim"] ) return cls(**config)
def from_config(cls, config): config["bidirectional"] = hyperparameters.deserialize( config["bidirectional"] ) config["num_layers"] = hyperparameters.deserialize(config["num_layers"]) config["layer_type"] = hyperparameters.deserialize(config["layer_type"]) return cls(**config)
def from_config(cls, config): config["kernel_size"] = hyperparameters.deserialize(config["kernel_size"]) config["num_blocks"] = hyperparameters.deserialize(config["num_blocks"]) config["num_layers"] = hyperparameters.deserialize(config["num_layers"]) config["filters"] = hyperparameters.deserialize(config["filters"]) config["dropout"] = hyperparameters.deserialize(config["dropout"]) return cls(**config)
def from_config(cls, config): config["max_sequence_length"] = hyperparameters.deserialize( config["max_sequence_length"] ) return cls(**config)
def from_config(cls, config): config["num_layers"] = hyperparameters.deserialize(config["num_layers"]) config["num_units"] = hyperparameters.deserialize(config["num_units"]) config["dropout"] = hyperparameters.deserialize(config["dropout"]) return cls(**config)
def from_config(cls, config): config["rotation_factor"] = hyperparameters.deserialize( config["rotation_factor"] ) return cls(**config)