예제 #1
0
  def _group_to_dag_spec(
      self,
      group: dsl.OpsGroup,
      inputs: Dict[str, List[Tuple[dsl.PipelineParam, str]]],
      outputs: Dict[str, List[Tuple[dsl.PipelineParam, str]]],
      dependencies: Dict[str, List[_GroupOrOp]],
      pipeline_spec: pipeline_spec_pb2.PipelineSpec,
      deployment_config: pipeline_spec_pb2.PipelineDeploymentConfig,
      rootgroup_name: str,
  ) -> None:
    """Generate IR spec given an OpsGroup.

    Args:
      group: The OpsGroup to generate spec for.
      inputs: The inputs dictionary. The keys are group/op names and values are
        lists of tuples (param, producing_op_name).
      outputs: The outputs dictionary. The keys are group/op names and values
        are lists of tuples (param, producing_op_name).
      dependencies: The group dependencies dictionary. The keys are group/op
        names, and the values are lists of dependent groups/ops.
      pipeline_spec: The pipeline_spec to update in-place.
      deployment_config: The deployment_config to hold all executors.
      rootgroup_name: The name of the group root. Used to determine whether the
        component spec for the current group should be the root dag.
    """
    group_component_name = dsl_utils.sanitize_component_name(group.name)

    if group.name == rootgroup_name:
      group_component_spec = pipeline_spec.root
    else:
      group_component_spec = pipeline_spec.components[group_component_name]

    # Generate task specs and component specs for the dag.
    subgroups = group.groups + group.ops
    for subgroup in subgroups:
      subgroup_task_spec = getattr(subgroup, 'task_spec',
                                   pipeline_spec_pb2.PipelineTaskSpec())
      subgroup_component_spec = getattr(subgroup, 'component_spec',
                                        pipeline_spec_pb2.ComponentSpec())
      is_loop_subgroup = (isinstance(group, dsl.ParallelFor))
      is_recursive_subgroup = (
          isinstance(subgroup, dsl.OpsGroup) and subgroup.recursive_ref)

      # Special handling for recursive subgroup: use the existing opsgroup name
      if is_recursive_subgroup:
        subgroup_key = subgroup.recursive_ref.name
      else:
        subgroup_key = subgroup.name

      subgroup_task_spec.task_info.name = (
          subgroup_task_spec.task_info.name or
          dsl_utils.sanitize_task_name(subgroup_key))
      # human_name exists for ops only, and is used to de-dupe component spec.
      subgroup_component_name = (
          subgroup_task_spec.component_ref.name or
          dsl_utils.sanitize_component_name(
              getattr(subgroup, 'human_name', subgroup_key)))
      subgroup_task_spec.component_ref.name = subgroup_component_name

      if isinstance(subgroup, dsl.OpsGroup) and subgroup.type == 'graph':
        raise NotImplementedError(
            'dsl.graph_component is not yet supported in KFP v2 compiler.')

      if isinstance(subgroup, dsl.OpsGroup) and subgroup.type == 'exit_handler':
        raise NotImplementedError(
            'dsl.ExitHandler is not yet supported in KFP v2 compiler.')

      importer_tasks = []
      # Add importer node when applicable
      for input_name in subgroup_task_spec.inputs.artifacts:
        if not subgroup_task_spec.inputs.artifacts[
            input_name].task_output_artifact.producer_task:
          type_schema = type_utils.get_input_artifact_type_schema(
              input_name, subgroup._metadata.inputs)

          importer_name = importer_node.generate_importer_base_name(
              dependent_task_name=subgroup_task_spec.task_info.name,
              input_name=input_name)
          importer_task_spec = importer_node.build_importer_task_spec(
              importer_name)
          importer_comp_spec = importer_node.build_importer_component_spec(
              importer_base_name=importer_name,
              input_name=input_name,
              input_type_schema=type_schema)
          importer_task_name = importer_task_spec.task_info.name
          importer_comp_name = importer_task_spec.component_ref.name
          importer_exec_label = importer_comp_spec.executor_label
          group_component_spec.dag.tasks[importer_task_name].CopyFrom(
              importer_task_spec)
          pipeline_spec.components[importer_comp_name].CopyFrom(
              importer_comp_spec)

          subgroup_task_spec.inputs.artifacts[
              input_name].task_output_artifact.producer_task = (
                  importer_task_name)
          subgroup_task_spec.inputs.artifacts[
              input_name].task_output_artifact.output_artifact_key = (
                  importer_node.OUTPUT_KEY)

          # Retrieve the pre-built importer spec
          importer_spec = subgroup.importer_specs[input_name]
          deployment_config.executors[importer_exec_label].importer.CopyFrom(
              importer_spec)

          importer_tasks.append(importer_task_name)

      group_inputs = inputs.get(group.name, [])
      subgroup_inputs = inputs.get(subgroup.name, [])
      subgroup_params = [param for param, _ in subgroup_inputs]
      tasks_in_current_dag = [
          dsl_utils.sanitize_task_name(subgroup.name) for subgroup in subgroups
      ] + importer_tasks

      is_parent_component_root = group_component_spec == pipeline_spec.root

      # Additional spec modifications for dsl.ParallelFor's subgroups.
      if is_loop_subgroup:
        self._update_loop_specs(group, subgroup, group_component_spec,
                                subgroup_component_spec, subgroup_task_spec)

      elif isinstance(subgroup, dsl.ContainerOp):
        dsl_component_spec.update_task_inputs_spec(
            subgroup_task_spec,
            group_component_spec.input_definitions,
            subgroup_params,
            tasks_in_current_dag,
        )

      if isinstance(subgroup, dsl.OpsGroup) and subgroup.type == 'condition':

        # "punch the hole", adding inputs needed by its subgroup or tasks.
        dsl_component_spec.build_component_inputs_spec(
            component_spec=subgroup_component_spec,
            pipeline_params=subgroup_params,
            is_root_component=False,
        )
        dsl_component_spec.build_task_inputs_spec(
            subgroup_task_spec,
            subgroup_params,
            tasks_in_current_dag,
            is_parent_component_root,
        )

        condition = subgroup.condition
        operand_values = []

        for operand in [condition.operand1, condition.operand2]:
          operand_values.append(self._resolve_value_or_reference(operand))

        condition_string = '{} {} {}'.format(operand_values[0],
                                             condition.operator,
                                             operand_values[1])

        subgroup_task_spec.trigger_policy.CopyFrom(
            pipeline_spec_pb2.PipelineTaskSpec.TriggerPolicy(
                condition=condition_string))

      # Generate dependencies section for this task.
      if dependencies.get(subgroup.name, None):
        group_dependencies = list(dependencies[subgroup.name])
        group_dependencies.sort()
        subgroup_task_spec.dependent_tasks.extend(
            [dsl_utils.sanitize_task_name(dep) for dep in group_dependencies])

      if isinstance(subgroup, dsl.ParallelFor):
        if subgroup.parallelism is not None:
          warnings.warn(
              'Setting parallelism in ParallelFor is not supported yet.'
              'The setting is ignored.')

        # Remove loop arguments related inputs from parent group component spec.
        input_names = [param.full_name for param, _ in inputs[subgroup.name]]
        for input_name in input_names:
          if _for_loop.LoopArguments.name_is_loop_argument(input_name):
            dsl_component_spec.pop_input_from_component_spec(
                group_component_spec, input_name)

        if subgroup.items_is_pipeline_param:
          # These loop args are a 'withParam' rather than 'withItems'.
          # i.e., rather than a static list, they are either the output of
          # another task or were input as global pipeline parameters.

          pipeline_param = subgroup.loop_args.items_or_pipeline_param
          input_parameter_name = pipeline_param.full_name

          if pipeline_param.op_name:
            subgroup_task_spec.inputs.parameters[
                input_parameter_name].task_output_parameter.producer_task = (
                    dsl_utils.sanitize_task_name(pipeline_param.op_name))
            subgroup_task_spec.inputs.parameters[
                input_parameter_name].task_output_parameter.output_parameter_key = (
                    pipeline_param.name)
          else:
            subgroup_task_spec.inputs.parameters[
                input_parameter_name].component_input_parameter = (
                    input_parameter_name)

          if pipeline_param.op_name is None:
            # Input parameter is from pipeline func rather than component output.
            # Correct loop argument input type in the parent component spec.
            # The loop argument was categorized as an artifact due to its missing
            # or non-primitive type annotation. But it should always be String
            # typed, as its value is a serialized JSON string.
            dsl_component_spec.pop_input_from_component_spec(
                group_component_spec, input_parameter_name)
            group_component_spec.input_definitions.parameters[
                input_parameter_name].type = pipeline_spec_pb2.PrimitiveType.STRING

      # Add component spec if not exists
      if subgroup_component_name not in pipeline_spec.components:
        pipeline_spec.components[subgroup_component_name].CopyFrom(
            subgroup_component_spec)

      # Add task spec
      group_component_spec.dag.tasks[
          subgroup_task_spec.task_info.name].CopyFrom(subgroup_task_spec)

      # Add executor spec, if applicable.
      container_spec = getattr(subgroup, 'container_spec', None)
      if container_spec:
        if compiler_utils.is_v2_component(subgroup):
          compiler_utils.refactor_v2_container_spec(container_spec)
        executor_label = subgroup_component_spec.executor_label

        if executor_label not in deployment_config.executors:
          deployment_config.executors[executor_label].container.CopyFrom(
              container_spec)

      # Add AIPlatformCustomJobSpec, if applicable.
      custom_job_spec = getattr(subgroup, 'custom_job_spec', None)
      if custom_job_spec:
        executor_label = subgroup_component_spec.executor_label
        if executor_label not in deployment_config.executors:
          deployment_config.executors[
              executor_label].custom_job.custom_job.update(custom_job_spec)

    pipeline_spec.deployment_spec.update(
        json_format.MessageToDict(deployment_config))
예제 #2
0
  def _group_to_dag_spec(
      self,
      group: dsl.OpsGroup,
      inputs: Dict[str, List[Tuple[dsl.PipelineParam, str]]],
      outputs: Dict[str, List[Tuple[dsl.PipelineParam, str]]],
      dependencies: Dict[str, List[_GroupOrOp]],
      pipeline_spec: pipeline_spec_pb2.PipelineSpec,
      deployment_config: pipeline_spec_pb2.PipelineDeploymentConfig,
      rootgroup_name: str,
      op_to_parent_groups: Dict[str, List[str]],
  ) -> None:
    """Generate IR spec given an OpsGroup.

    Args:
      group: The OpsGroup to generate spec for.
      inputs: The inputs dictionary. The keys are group/op names and values are
        lists of tuples (param, producing_op_name).
      outputs: The outputs dictionary. The keys are group/op names and values
        are lists of tuples (param, producing_op_name).
      dependencies: The group dependencies dictionary. The keys are group/op
        names, and the values are lists of dependent groups/ops.
      pipeline_spec: The pipeline_spec to update in-place.
      deployment_config: The deployment_config to hold all executors.
      rootgroup_name: The name of the group root. Used to determine whether the
        component spec for the current group should be the root dag.
      op_to_parent_groups: The dict of op name to parent groups. Key is the op's
        name. Value is a list of ancestor groups including the op itself. The
        list of a given op is sorted in a way that the farthest group is the
        first and the op itself is the last.
    """
    group_component_name = dsl_utils.sanitize_component_name(group.name)

    if group.name == rootgroup_name:
      group_component_spec = pipeline_spec.root
    else:
      group_component_spec = pipeline_spec.components[group_component_name]

    # Generate task specs and component specs for the dag.
    subgroups = group.groups + group.ops
    for subgroup in subgroups:
      subgroup_task_spec = getattr(subgroup, 'task_spec',
                                   pipeline_spec_pb2.PipelineTaskSpec())
      subgroup_component_spec = getattr(subgroup, 'component_spec',
                                        pipeline_spec_pb2.ComponentSpec())

      is_recursive_subgroup = (
          isinstance(subgroup, dsl.OpsGroup) and subgroup.recursive_ref)

      # Special handling for recursive subgroup: use the existing opsgroup name
      if is_recursive_subgroup:
        subgroup_key = subgroup.recursive_ref.name
      else:
        subgroup_key = subgroup.name

      subgroup_task_spec.task_info.name = (
          subgroup_task_spec.task_info.name or
          dsl_utils.sanitize_task_name(subgroup_key))
      # human_name exists for ops only, and is used to de-dupe component spec.
      subgroup_component_name = (
          subgroup_task_spec.component_ref.name or
          dsl_utils.sanitize_component_name(
              getattr(subgroup, 'human_name', subgroup_key)))
      subgroup_task_spec.component_ref.name = subgroup_component_name

      if isinstance(subgroup, dsl.OpsGroup) and subgroup.type == 'graph':
        raise NotImplementedError(
            'dsl.graph_component is not yet supported in KFP v2 compiler.')

      if isinstance(subgroup, dsl.OpsGroup) and subgroup.type == 'exit_handler':
        raise NotImplementedError(
            'dsl.ExitHandler is not yet supported in KFP v2 compiler.')

      if isinstance(subgroup, dsl.ContainerOp):
        if hasattr(subgroup, 'importer_spec'):
          importer_task_name = subgroup.task_spec.task_info.name
          importer_comp_name = subgroup.task_spec.component_ref.name
          importer_exec_label = subgroup.component_spec.executor_label
          group_component_spec.dag.tasks[importer_task_name].CopyFrom(
              subgroup.task_spec)
          pipeline_spec.components[importer_comp_name].CopyFrom(
              subgroup.component_spec)
          deployment_config.executors[importer_exec_label].importer.CopyFrom(
              subgroup.importer_spec)

      subgroup_inputs = inputs.get(subgroup.name, [])
      subgroup_params = [param for param, _ in subgroup_inputs]

      tasks_in_current_dag = [
          dsl_utils.sanitize_task_name(subgroup.name) for subgroup in subgroups
      ]

      input_parameters_in_current_dag = [
          input_name
          for input_name in group_component_spec.input_definitions.parameters
      ]
      input_artifacts_in_current_dag = [
          input_name
          for input_name in group_component_spec.input_definitions.artifacts
      ]

      is_parent_component_root = group_component_spec == pipeline_spec.root

      if isinstance(subgroup, dsl.ContainerOp):
        dsl_component_spec.update_task_inputs_spec(
            subgroup_task_spec,
            group_component_spec.input_definitions,
            subgroup_params,
            tasks_in_current_dag,
            input_parameters_in_current_dag,
            input_artifacts_in_current_dag,
        )

      if isinstance(subgroup, dsl.ParallelFor):
        if subgroup.parallelism is not None:
          warnings.warn(
              'Setting parallelism in ParallelFor is not supported yet.'
              'The setting is ignored.')

        # "Punch the hole", adding additional inputs (other than loop arguments
        # which will be handled separately) needed by its subgroup or tasks.
        loop_subgroup_params = []
        for param in subgroup_params:
          if isinstance(
              param, (_for_loop.LoopArguments, _for_loop.LoopArgumentVariable)):
            continue
          loop_subgroup_params.append(param)

        if subgroup.items_is_pipeline_param:
          # This loop_args is a 'withParam' rather than a 'withItems'.
          # i.e., rather than a static list, it is either the output of
          # another task or an input as global pipeline parameters.
          loop_subgroup_params.append(
              subgroup.loop_args.items_or_pipeline_param)

        dsl_component_spec.build_component_inputs_spec(
            component_spec=subgroup_component_spec,
            pipeline_params=loop_subgroup_params,
            is_root_component=False,
        )
        dsl_component_spec.build_task_inputs_spec(
            subgroup_task_spec,
            loop_subgroup_params,
            tasks_in_current_dag,
            is_parent_component_root,
        )

        if subgroup.items_is_pipeline_param:
          input_parameter_name = (
              dsl_component_spec.additional_input_name_for_pipelineparam(
                  subgroup.loop_args.items_or_pipeline_param))
          loop_arguments_item = '{}-{}'.format(
              input_parameter_name, _for_loop.LoopArguments.LOOP_ITEM_NAME_BASE)

          subgroup_component_spec.input_definitions.parameters[
              loop_arguments_item].type = pipeline_spec_pb2.PrimitiveType.STRING
          subgroup_task_spec.parameter_iterator.items.input_parameter = (
              input_parameter_name)
          subgroup_task_spec.parameter_iterator.item_input = (
              loop_arguments_item)

          # If the loop arguments itself is a loop arguments variable, handle
          # the subvar name.
          loop_args_name, subvar_name = (
              dsl_component_spec._exclude_loop_arguments_variables(
                  subgroup.loop_args.items_or_pipeline_param))
          if subvar_name:
            subgroup_task_spec.inputs.parameters[
                input_parameter_name].parameter_expression_selector = (
                    'parseJson(string_value)["{}"]'.format(subvar_name))
            subgroup_task_spec.inputs.parameters[
                input_parameter_name].component_input_parameter = (
                    dsl_component_spec.additional_input_name_for_pipelineparam(
                        loop_args_name))

        else:
          input_parameter_name = (
              dsl_component_spec.additional_input_name_for_pipelineparam(
                  subgroup.loop_args.full_name))
          raw_values = subgroup.loop_args.to_list_for_task_yaml()

          subgroup_component_spec.input_definitions.parameters[
              input_parameter_name].type = pipeline_spec_pb2.PrimitiveType.STRING
          subgroup_task_spec.parameter_iterator.items.raw = json.dumps(
              raw_values, sort_keys=True)
          subgroup_task_spec.parameter_iterator.item_input = (
              input_parameter_name)

      if isinstance(subgroup, dsl.OpsGroup) and subgroup.type == 'condition':

        # "punch the hole", adding inputs needed by its subgroup or tasks.
        dsl_component_spec.build_component_inputs_spec(
            component_spec=subgroup_component_spec,
            pipeline_params=subgroup_params,
            is_root_component=False,
        )
        dsl_component_spec.build_task_inputs_spec(
            subgroup_task_spec,
            subgroup_params,
            tasks_in_current_dag,
            is_parent_component_root,
        )

        condition = subgroup.condition
        operand_values = []

        operand1_value, operand2_value = self._resolve_condition_operands(
            condition.operand1, condition.operand2)

        condition_string = '{} {} {}'.format(operand1_value, condition.operator,
                                             operand2_value)

        subgroup_task_spec.trigger_policy.CopyFrom(
            pipeline_spec_pb2.PipelineTaskSpec.TriggerPolicy(
                condition=condition_string))

      # Generate dependencies section for this task.
      if dependencies.get(subgroup.name, None):
        group_dependencies = list(dependencies[subgroup.name])
        group_dependencies.sort()
        subgroup_task_spec.dependent_tasks.extend(
            [dsl_utils.sanitize_task_name(dep) for dep in group_dependencies])

      # Add component spec if not exists
      if subgroup_component_name not in pipeline_spec.components:
        pipeline_spec.components[subgroup_component_name].CopyFrom(
            subgroup_component_spec)

      # Add task spec
      group_component_spec.dag.tasks[
          subgroup_task_spec.task_info.name].CopyFrom(subgroup_task_spec)

      # Add AIPlatformCustomJobSpec, if applicable.
      custom_job_spec = getattr(subgroup, 'custom_job_spec', None)
      if custom_job_spec:
        executor_label = subgroup_component_spec.executor_label
        if executor_label not in deployment_config.executors:
          deployment_config.executors[
              executor_label].custom_job.custom_job.update(custom_job_spec)

      # Add executor spec, if applicable.
      container_spec = getattr(subgroup, 'container_spec', None)
      # Ignore contaienr_spec if custom_job_spec exists.
      if container_spec and not custom_job_spec:
        if compiler_utils.is_v2_component(subgroup):
          compiler_utils.refactor_v2_container_spec(container_spec)
        executor_label = subgroup_component_spec.executor_label

        if executor_label not in deployment_config.executors:
          deployment_config.executors[executor_label].container.CopyFrom(
              container_spec)

    pipeline_spec.deployment_spec.update(
        json_format.MessageToDict(deployment_config))

    # Surface metrics outputs to the top.
    self._populate_metrics_in_dag_outputs(
        group.ops,
        op_to_parent_groups,
        pipeline_spec,
    )
예제 #3
0
    def _create_pipeline_spec(
        self,
        args: List[dsl.PipelineParam],
        pipeline: dsl.Pipeline,
    ) -> pipeline_spec_pb2.PipelineSpec:
        """Creates the pipeline spec object.

    Args:
      args: The list of pipeline arguments.
      pipeline: The instantiated pipeline object.

    Returns:
      A PipelineSpec proto representing the compiled pipeline.

    Raises:
      NotImplementedError if the argument is of unsupported types.
    """
        compiler_utils.validate_pipeline_name(pipeline.name)

        pipeline_spec = pipeline_spec_pb2.PipelineSpec()

        pipeline_spec.pipeline_info.name = pipeline.name
        pipeline_spec.sdk_version = 'kfp-{}'.format(kfp.__version__)
        # Schema version 2.0.0 is required for kfp-pipeline-spec>0.1.3.1
        pipeline_spec.schema_version = '2.0.0'

        pipeline_spec.root.CopyFrom(
            dsl_component_spec.build_root_spec_from_pipeline_params(args))

        deployment_config = pipeline_spec_pb2.PipelineDeploymentConfig()

        for op in pipeline.ops.values():
            task_name = op.task_spec.task_info.name
            component_name = op.task_spec.component_ref.name
            executor_label = op.component_spec.executor_label

            pipeline_spec.root.dag.tasks[task_name].CopyFrom(op.task_spec)
            pipeline_spec.components[component_name].CopyFrom(
                op.component_spec)
            if compiler_utils.is_v2_component(op):
                compiler_utils.refactor_v2_container_spec(op.container_spec)

            deployment_config.executors[executor_label].container.CopyFrom(
                op.container_spec)

            task = pipeline_spec.root.dag.tasks[task_name]
            # A task may have explicit depdency on other tasks even though they may
            # not have inputs/outputs dependency. e.g.: op2.after(op1)
            if op.dependent_names:
                op.dependent_names = [
                    dsl_utils.sanitize_task_name(name)
                    for name in op.dependent_names
                ]
                task.dependent_tasks.extend(op.dependent_names)

            # Check if need to insert importer node
            for input_name in task.inputs.artifacts:
                if not task.inputs.artifacts[
                        input_name].task_output_artifact.producer_task:
                    type_schema = type_utils.get_input_artifact_type_schema(
                        input_name, op._metadata.inputs)

                    importer_name = importer_node.generate_importer_base_name(
                        dependent_task_name=task_name, input_name=input_name)
                    importer_task_spec = importer_node.build_importer_task_spec(
                        importer_name)
                    importer_comp_spec = importer_node.build_importer_component_spec(
                        importer_base_name=importer_name,
                        input_name=input_name,
                        input_type_schema=type_schema)
                    importer_task_name = importer_task_spec.task_info.name
                    importer_comp_name = importer_task_spec.component_ref.name
                    importer_exec_label = importer_comp_spec.executor_label
                    pipeline_spec.root.dag.tasks[importer_task_name].CopyFrom(
                        importer_task_spec)
                    pipeline_spec.components[importer_comp_name].CopyFrom(
                        importer_comp_spec)

                    task.inputs.artifacts[
                        input_name].task_output_artifact.producer_task = (
                            importer_task_name)
                    task.inputs.artifacts[
                        input_name].task_output_artifact.output_artifact_key = (
                            importer_node.OUTPUT_KEY)

                    # Retrieve the pre-built importer spec
                    importer_spec = op.importer_specs[input_name]
                    deployment_config.executors[
                        importer_exec_label].importer.CopyFrom(importer_spec)

        pipeline_spec.deployment_spec.update(
            json_format.MessageToDict(deployment_config))

        return pipeline_spec
    def _group_to_dag_spec(
        self,
        group: dsl.OpsGroup,
        inputs: Dict[str, List[Tuple[dsl.PipelineParam, str]]],
        outputs: Dict[str, List[Tuple[dsl.PipelineParam, str]]],
        dependencies: Dict[str, List[_GroupOrOp]],
        pipeline_spec: pipeline_spec_pb2.PipelineSpec,
        rootgroup_name: str,
    ) -> None:
        """Generate IR spec given an OpsGroup.

    Args:
      group: The OpsGroup to generate spec for.
      inputs: The inputs dictionary. The keys are group/op names and values are
        lists of tuples (param, producing_op_name).
      outputs: The outputs dictionary. The keys are group/op names and values
        are lists of tuples (param, producing_op_name).
      dependencies: The group dependencies dictionary. The keys are group/op
        names, and the values are lists of dependent groups/ops.
      pipeline_spec: The pipeline_spec to update in-place.
      rootgroup_name: The name of the group root. Used to determine whether the
        component spec for the current group should be the root dag.
    """
        group_component_name = dsl_utils.sanitize_component_name(group.name)

        if group.name == rootgroup_name:
            group_component_spec = pipeline_spec.root
        else:
            group_component_spec = pipeline_spec.components[
                group_component_name]

        deployment_config = pipeline_spec_pb2.PipelineDeploymentConfig()

        # Generate component inputs spec.
        if inputs.get(group.name, None):
            dsl_component_spec.build_component_inputs_spec(
                group_component_spec,
                [param for param, _ in inputs[group.name]])

        # Generate component outputs spec.
        if outputs.get(group.name, None):
            group_component_spec.output_definitions.CopyFrom(
                dsl_component_spec.build_component_outputs_spec(
                    [param for param, _ in outputs[group.name]]))

        # Generate task specs and component specs for the dag.
        subgroups = group.groups + group.ops
        for subgroup in subgroups:
            subgroup_task_spec = getattr(subgroup, 'task_spec',
                                         pipeline_spec_pb2.PipelineTaskSpec())
            subgroup_component_spec = getattr(
                subgroup, 'component_spec', pipeline_spec_pb2.ComponentSpec())
            is_recursive_subgroup = (isinstance(subgroup, dsl.OpsGroup)
                                     and subgroup.recursive_ref)
            # Special handling for recursive subgroup: use the existing opsgroup name
            if is_recursive_subgroup:
                subgroup_key = subgroup.recursive_ref.name
            else:
                subgroup_key = subgroup.name

            subgroup_task_spec.task_info.name = dsl_utils.sanitize_task_name(
                subgroup_key)
            # human_name exists for ops only, and is used to de-dupe component spec.
            subgroup_component_name = dsl_utils.sanitize_component_name(
                getattr(subgroup, 'human_name', subgroup_key))
            subgroup_task_spec.component_ref.name = subgroup_component_name

            if isinstance(subgroup,
                          dsl.OpsGroup) and subgroup.type == 'condition':
                condition = subgroup.condition
                operand_values = []
                subgroup_inputs = inputs.get(subgroup.name, [])
                subgroup_params = [param for param, _ in subgroup_inputs]
                tasks_in_current_dag = [
                    subgroup.name for subgroup in subgroups
                ]

                dsl_component_spec.build_component_inputs_spec(
                    subgroup_component_spec,
                    subgroup_params,
                )
                dsl_component_spec.build_task_inputs_spec(
                    subgroup_task_spec,
                    subgroup_params,
                    tasks_in_current_dag,
                )

                for operand in [condition.operand1, condition.operand2]:
                    operand_values.append(
                        self._resolve_value_or_reference(operand))

                condition_string = '{} {} {}'.format(operand_values[0],
                                                     condition.operator,
                                                     operand_values[1])

                subgroup_task_spec.trigger_policy.CopyFrom(
                    pipeline_spec_pb2.PipelineTaskSpec.TriggerPolicy(
                        condition=condition_string))

            # Generate dependencies section for this task.
            if dependencies.get(subgroup.name, None):
                group_dependencies = list(dependencies[subgroup.name])
                group_dependencies.sort()
                subgroup_task_spec.dependent_tasks.extend([
                    dsl_utils.sanitize_task_name(dep)
                    for dep in group_dependencies
                ])

            # Add importer node when applicable
            for input_name in subgroup_task_spec.inputs.artifacts:
                if not subgroup_task_spec.inputs.artifacts[
                        input_name].task_output_artifact.producer_task:
                    type_schema = type_utils.get_input_artifact_type_schema(
                        input_name, subgroup._metadata.inputs)

                    importer_name = importer_node.generate_importer_base_name(
                        dependent_task_name=subgroup_task_spec.task_info.name,
                        input_name=input_name)
                    importer_task_spec = importer_node.build_importer_task_spec(
                        importer_name)
                    importer_comp_spec = importer_node.build_importer_component_spec(
                        importer_base_name=importer_name,
                        input_name=input_name,
                        input_type_schema=type_schema)
                    importer_task_name = importer_task_spec.task_info.name
                    importer_comp_name = importer_task_spec.component_ref.name
                    importer_exec_label = importer_comp_spec.executor_label
                    group_component_spec.dag.tasks[
                        importer_task_name].CopyFrom(importer_task_spec)
                    pipeline_spec.components[importer_comp_name].CopyFrom(
                        importer_comp_spec)

                    subgroup_task_spec.inputs.artifacts[
                        input_name].task_output_artifact.producer_task = (
                            importer_task_name)
                    subgroup_task_spec.inputs.artifacts[
                        input_name].task_output_artifact.output_artifact_key = (
                            importer_node.OUTPUT_KEY)

                    # Retrieve the pre-built importer spec
                    importer_spec = subgroup.importer_specs[input_name]
                    deployment_config.executors[
                        importer_exec_label].importer.CopyFrom(importer_spec)

            # Add component spec if not exists
            if subgroup_component_name not in pipeline_spec.components:
                pipeline_spec.components[subgroup_component_name].CopyFrom(
                    subgroup_component_spec)

            # Add task spec
            group_component_spec.dag.tasks[
                subgroup_task_spec.task_info.name].CopyFrom(subgroup_task_spec)

            # Add executor spec
            container_spec = getattr(subgroup, 'container_spec', None)
            if container_spec:
                if compiler_utils.is_v2_component(subgroup):
                    compiler_utils.refactor_v2_container_spec(container_spec)
                executor_label = subgroup_component_spec.executor_label

                if executor_label not in deployment_config.executors:
                    deployment_config.executors[
                        executor_label].container.CopyFrom(container_spec)

        pipeline_spec.deployment_spec.update(
            json_format.MessageToDict(deployment_config))