예제 #1
0
 def _function_calls(self, query, include_implicit, include_metatypes):
     exec = ex.TraversalExecutor(self._tx)
     schema_concept_types = exec.get_schema_concept_types(
         query,
         include_implicit=include_implicit,
         include_metatypes=include_metatypes)
     labels = trv.labels_from_types(schema_concept_types)
     return labels
예제 #2
0
    def test_integration(self):
        client = grakn.client.GraknClient(uri=TEST_URI)
        session = client.session(keyspace=TEST_KEYSPACE)
        tx = session.transaction().write()

        print("================= THINGS ======================")
        te = ex.TraversalExecutor(tx)
        schema_concept_types = te.get_schema_concept_types(
            encode.GET_THING_TYPES_QUERY,
            include_implicit=True,
            include_metatypes=False)
        labels = trv.labels_from_types(schema_concept_types)
        print(list(labels))

        schema_concept_types = te.get_schema_concept_types(
            encode.GET_THING_TYPES_QUERY,
            include_implicit=True,
            include_metatypes=False)
        super_types = trv.get_sups_labels_per_type(schema_concept_types,
                                                   include_self=True,
                                                   include_metatypes=False)
        print("==== super types ====")
        [print(type, super_types) for type, super_types in super_types.items()]

        print("================= ROLES ======================")
        schema_concept_types = te.get_schema_concept_types(
            encode.GET_ROLE_TYPES_QUERY,
            include_implicit=True,
            include_metatypes=False)
        labels = trv.labels_from_types(schema_concept_types)
        print(list(labels))

        schema_concept_types = te.get_schema_concept_types(
            encode.GET_ROLE_TYPES_QUERY,
            include_implicit=True,
            include_metatypes=False)
        super_types = trv.get_sups_labels_per_type(schema_concept_types,
                                                   include_self=True,
                                                   include_metatypes=False)
        print("==== super types ====")
        [print(type, super_types) for type, super_types in super_types.items()]
예제 #3
0
    def test_integration(self):
        client = grakn.Grakn(uri="localhost:48555")
        session = client.session(keyspace="test_schema")
        tx = session.transaction(grakn.TxType.WRITE)

        print("================= THINGS ======================")
        te = ex.TraversalExecutor(tx)
        schema_concept_types = te.get_schema_concept_types(
            encode.GET_THING_TYPES_QUERY,
            include_implicit=True,
            include_metatypes=False)
        labels = trv.labels_from_types(schema_concept_types)
        print(list(labels))

        schema_concept_types = te.get_schema_concept_types(
            encode.GET_THING_TYPES_QUERY,
            include_implicit=True,
            include_metatypes=False)
        super_types = trv.get_sups_labels_per_type(schema_concept_types,
                                                   include_self=True,
                                                   include_metatypes=False)
        print("==== super types ====")
        [print(type, super_types) for type, super_types in super_types.items()]

        print("================= ROLES ======================")
        schema_concept_types = te.get_schema_concept_types(
            encode.GET_ROLE_TYPES_QUERY,
            include_implicit=True,
            include_metatypes=False)
        labels = trv.labels_from_types(schema_concept_types)
        print(list(labels))

        schema_concept_types = te.get_schema_concept_types(
            encode.GET_ROLE_TYPES_QUERY,
            include_implicit=True,
            include_metatypes=False)
        super_types = trv.get_sups_labels_per_type(schema_concept_types,
                                                   include_self=True,
                                                   include_metatypes=False)
        print("==== super types ====")
        [print(type, super_types) for type, super_types in super_types.items()]
예제 #4
0
파일: encode.py 프로젝트: w1074098501/kglib
    def __init__(self, schema_tx):
        ################################################################################################################
        # Schema Traversals
        ################################################################################################################

        # This depends upon the schema being the same for the keyspace used in training vs eval and predict
        schema_traversal_executor = schema_ex.TraversalExecutor(schema_tx)

        # THINGS
        thing_schema_traversal = trav.traverse_schema(
            schema_traversal_executor, GET_THING_TYPES_QUERY)

        # ROLES
        role_schema_traversal = trav.traverse_schema(schema_traversal_executor,
                                                     GET_ROLE_TYPES_QUERY)
        role_schema_traversal['has'] = ['has']

        ############################################################################################################
        # Encoders Initialisation
        ############################################################################################################

        with tf.name_scope('encoding_init') as scope:
            thing_encoder = schema.MultiHotSchemaTypeEncoder(
                thing_schema_traversal, name='thing_encoder')
            role_encoder = schema.MultiHotSchemaTypeEncoder(
                role_schema_traversal, name='role_encoder')

            # In case of issues https://github.com/tensorflow/hub/issues/61
            string_encoder = tf_hub.TensorFlowHubEncoder(
                "https://tfhub.dev/google/nnlm-en-dim128-with-normalization/1",
                128)

            data_types = list(neighbour.DATA_TYPE_NAMES)
            data_types.insert(
                0, NO_DATA_TYPE
            )  # For the case where an entity or relation is encountered
            data_types_traversal = {
                data_type: data_types
                for data_type in data_types
            }

            # Later a hierarchy could be added to data_type meaning. e.g. long and double are both numeric
            data_type_encoder = schema.MultiHotSchemaTypeEncoder(
                data_types_traversal, name='data_type_encoder')

        self._encoders = {
            'role_type':
            role_encoder,
            'role_direction':
            lambda x: tf.to_float(x, 'role_dir_to_float'),
            'neighbour_type':
            thing_encoder,
            'neighbour_data_type':
            lambda x: data_type_encoder(tf.convert_to_tensor(x)),
            'neighbour_value_long':
            lambda x: tf.to_float(x, name='long_to_float'),
            'neighbour_value_double':
            lambda x: x,
            'neighbour_value_boolean':
            lambda x: tf.to_float(boolean.one_hot_boolean_encode(
                x, 'boolean_1_hot'),
                                  name='boolean_to_float'),
            'neighbour_value_date':
            lambda x: tf.nn.l2_normalize(tf.to_float(x, name='date_to_float')),
            'neighbour_value_string':
            string_encoder
        }