예제 #1
0
파일: aviso.py 프로젝트: regeirk/atlantis
    def read(self, t=None, z=None, y=None, x=None, N=None, K=None, J=None,
        I=None, var=None, nonan=True, result='full', profile=False,
        dummy=False):
        """Reads dataset.

        PARAMETERS
            t, z, y, x (array like, optional) :
                Sets the time, height, latitude and longitude for which
                the data will be read.
            N, K, J, I (array like, optional) :
                Sets the temporal, vertical, meridional and zonal
                indices for which the data will be read.
            var (string, optional) :
                Indicates which variable of the grid will be read. If
                the parameter is a list of variables, then the data will
                be returned as a list of arrays.
            nonan (boolean, optional) :
                If set to true (default) changes data values containing
                NaN to zero, preserving the mask.
            result (string, optional) :
                Determines wheter all time, height, latitude, longitude
                and data will be returned ('full', default), if
                temporal, vertical, meridional and zonal indices
                are returned instead ('indices'), or if only
                variable data is returned ('var only').
            profile (boolean, optional) :
                Sets whether the status is send to screen.
            dummy (boolean, optional) :
                If set to true, does not load data and returns the shape
                of the array that would have been returned.

        RETURNS
            t, z, y, x, dat (array like) :
                If 'result' is set to 'full', then all coordinates and
                data variables are returned.
            N, K, J, I, var (array like) :
                If 'result' is set to 'indices', then all indices and
                data variables are returned.
            dat (array like) :
                If 'result' is set to 'var only', then the data is
                returned.

        """
        global DEBUG
        t1 = time()
        
        # Checks input variables for consistency.
        if (t != None) & (N != None):
            raise ValueError('Both time and temporal index were provided.')
        if (z != None) & (K != None):
            raise ValueError('Both height and vertical index were provided.')
        if (y != None) & (J != None):
            raise ValueError(
                'Both latitude and meridional index were provided.')
        if (x != None) & (I != None):
            raise ValueError('Both latitude and zonal index were provided.')
        if var == None:
            var = self.params['var_list']

        # Checks for variables indices. Intersects desired input values with
        # dataset dimesion data. In this dataset, since only surface data is
        # available, the height values are always zero.
        if t != None:
            N = flatnonzero(in1d(self.variables['time'].data, t))
        elif N == None:
            N = arange(self.dimensions['n'])
        if z != None:
            K = [0]
        elif K == None:
            K = [0]
        elif K != None:
            K = [0]
        if y != None:
            J = flatnonzero(in1d(self.variables['latitude'].data, y))
        elif J == None:
            J = arange(self.dimensions['j'])
        if x != None:
            I = flatnonzero(in1d(self.variables['longitude'].data, x))
        elif I == None:
            I = arange(self.dimensions['i'])

        # Sets the shape of the data array.
        shape = (len(N), 1, len(J), len(I))
        if dummy:
            return shape
        # Selects data according to indices.
        t = self.variables['time'].data[N]
        z = self.variables['height'].data
        y = self.variables['latitude'].data[J]
        x = self.variables['longitude'].data[I]
        xx, yy = meshgrid(x, y)
        II, JJ = meshgrid(I, J)
        
        # Ressets variables
        Var = dict()
        Datasets = dict()
        for item in var:
            Var[item] = ma.zeros(shape)
            try:
                Datasets[self.params['var_tcid'][item][0]][1].append(
                    self.params['var_tcid'][item][2]
                )
            except:
                Datasets[self.params['var_tcid'][item][0]] = [
                    self.params['var_tcid'][item][1],
                    [self.params['var_tcid'][item][2]]
                ]
        
        # Walks through every time index and loads data range from maps.
        for n, T in enumerate(t):
            t2 = time()
            if profile:
                s = '\rLoading data... %s ' % (profiler(shape[0], n + 1, 0, 
                    t1, t2),)
                stdout.write(s)
                stdout.flush()

            # Reads NetCDF file for each dataset
            for Dataset, (Datavar, Datagrid) in Datasets.items():
                params = dict(path=self.params['path'], dataset=Dataset,
                    datavar=Datavar, **self.params['file_list'][N[n]])
                fname = self.create_filename(**params)
                data = self.read_file(fname)
                #
                for Grid in Datagrid:
                    nvar = self.params['var_dict']['{0}_{1}'.format(Dataset,
                        Grid)]
                    if (('lon_i' in self.params.keys()) &
                        ('lat_j' in self.params.keys())):
                        P = data.variables[Grid].data.T[self.params['lat_j'],
                            self.params['lon_i']][JJ, II]
                    else:
                        P = data.variables[Grid].data.T[JJ, II]
                    P[P >= self.variables[item].missing_value] = nan
                    P = ma.masked_where(isnan(P), P)
                    if nonan:
                        P.data[P.mask] = 0
                    #
                    Var[nvar][n, 0, :, :] += P[:, :]
                #
                self.close_file(data)
        
        # If result dictionary contains only one item, return only the value
        # of this item.
        if len(Var.keys()) == 1:
            Var = Var[Var.keys()[0]]
        
        if profile:
            stdout.write('\r\n')
            stdout.flush()
        
        if DEBUG:
            print 't: ', t
            print 'z: ', z
            print 'y:', y
            print 'x:', x
            print 'var: ', Var
            print 'N: ', N
            print 'K: ', K
            print 'J: ', J
            print 'I:', I
            print 'shape: ', shape
        
        if result == 'full':
            return t, z, y, x, Var
        elif result == 'indices':
            return N, K, J, I, Var
        elif result == 'var only':
            return Var
        else:
            raise Warning("Result parameter set imporperly to '%s', "
                "assuming 'var only'." % (result))
            return Var
예제 #2
0
    def read(self, var, x=None, y=None, radius=0., tlim=None, ylim=None,
        xlim=None, missions=None, sort=True, profile=True):
        """Reads dataset.
        
        PARAMETERS
            var (string) :
                Variable to be read from dataset. It also accepts
                special naming conventions in order to rename the
                original dataset variable and to load alternative
                variables in case of invalid data according to the
                syntax '[new_var_name]:var[|other_var]'.
            x, y (array like, optional) :
                List of zonal and meridional point coordinate of 
                interest.
            radius (float, optional) :
                Search radius in degrees.
            tlim, ylim, xlim  (array like, optional) :
                The temporal, meridional and zonal limits (minimum,
                maximum) for which data will be read.
            missions (array like, optional) :
                List of missions to read data from. If omitted, defaults
                available missions on dataset class intialization.
            sort (boolean optional) :
                If true, sorts the data record in order of ascendant 
                time, latitude and longitude.
            profile (boolean, optional) :
                Sets whether the status is send to screen.
        
        RETURNS
            dat (record array) :
                Record time-series of 'time', 'latitude', 'longitude', 
                selected variable and 'mission'.
        
        """
        t0 = time()
        # Checks input parameters.
        T = self.variables['time'].data
        if var.find(':') >= 0:  # Checks spetial variable syntax
            var_name, var = var.split(':')
        else:
            var_name = var
        if tlim == None:
            tlim = (T.min(), T.max())
        if (x != None) | (y != None):
            x, y = asarray(x), asarray(y)
            if x.size != y.size:
                raise ValueError('Zonal and meridional coordinate dimensions '
                    'do not match.')
            npoints = x.size
            radius2 = radius ** 2
        else:
            npoints = 0
            x = y = []
            #
            if ylim == None:
                ylim = (-90., 90.)
            if xlim == None:
                xlim = (0., 360.)
            else:
                # Make sure longitude limits are between 0 and 360.
                xlim = list(lon360(asarray(xlim)))
        if missions == None:
            missions = self.params['missions']
        
        # First we have to select which files will be loaded, which will 
        # depend on the temporal limits given in $t$.
        sel_time = flatnonzero((T >= floor(min(tlim))) & 
            (T <= ceil(max(tlim))))
        N = len(sel_time)
        
        # Second we will walk through each of the selected time in the dataset
        # and load the correspondant file for the available missions.
        t1 = time()
        if profile:
            s = '\rLoading data...'
            stdout.write(s)
            stdout.flush()
        # Reset important variables
        TIME, LAT, LON, VAR, MISSION = [array([])] * 5
        #
        for i, tm in enumerate(T[sel_time]):
            t2 = time()
            for (mission, dset, fname, cycle,
                orbit) in self.attributes['time_dataset'][tm]:
                # Skips mission not in missions list.
                if mission not in missions:
                    continue
                # Uncompresses gzipped file and opens NetCDF instance.
                data = self.read_file('%s/%s/%s' % (self.params['path'], 
                    mission, fname))
                # Reads variable from NetCDF file.
                raw_time = self.read_variable(data, 'time')
                raw_lat = self.read_variable(data, 'lat')
                raw_lon = self.read_variable(data, 'lon')
                raw_dat = self.read_variable(data, var)
                # Select relevant data range according to limit parameters
                sel_from_time = (
                    (raw_time >= min(tlim)) & (raw_time <= max(tlim))
                )
                if (ylim != None) | (xlim !=None):
                    sel_from_limits = ones(data.dimensions['time'], dtype=bool)
                else:
                    sel_from_limits = zeros(data.dimensions['time'],
                        dtype=bool)
                if ylim != None:
                    sel_from_limits = (sel_from_limits & 
                        ((raw_lat >= min(ylim)) & (raw_lat <= max(ylim))))
                if xlim != None:
                    sel_from_limits = (sel_from_limits & 
                        ((raw_lon >= min(xlim)) & (raw_lon <= max(xlim))))
                # Select relevant data according to points and search radius.
                sel_from_radius =  zeros(data.dimensions['time'], dtype=bool)
                for xx, yy in zip(x, y):
                    distance2 = ((raw_lat - yy) ** 2 + 
                        (raw_lon - lon360(xx)) ** 2)
                    sel_from_radius = sel_from_radius | (distance2 <= radius2)
                #
                sel_data = flatnonzero(sel_from_time & 
                    (sel_from_limits | sel_from_radius) & (~isnan(raw_dat)))
                _time = raw_time[sel_data]
                _lat = raw_lat[sel_data]
                _lon = raw_lon[sel_data]
                _dat = raw_dat[sel_data]
                #
                TIME = append(TIME, _time)
                LAT = append(LAT, _lat)
                LON = append(LON, _lon)
                VAR = append(VAR, _dat)
                MISSION = append(MISSION, [mission] * len(sel_data))
                #
                self.close_file(data)
            #
            # Profiling
            if profile:
                s = '\rLoading data... %s ' % (profiler(N, i+1, t0, t1, t2),)
                stdout.write(s)
                stdout.flush()
        #
        if profile:
            stdout.write('\n')
            stdout.flush()

        # Converts the data a structured array
        DAT = rec.fromarrays((TIME, LAT, LON, VAR, MISSION), 
            dtype=[('time', float64), ('latitude', float64), 
            ('longitude', float64), (var_name, float64), ('mission', '|S3')])
        
        # Some data sorting?
        if sort:
            DAT.sort(order=('time', 'latitude', 'longitude'), axis=0)
        
        return DAT
예제 #3
0
    def read(self,
             t=None,
             z=None,
             y=None,
             x=None,
             N=None,
             K=None,
             J=None,
             I=None,
             var=None,
             nonan=True,
             result='full',
             profile=False,
             dummy=False):
        """Reads dataset.

        PARAMETERS
            t, z, y, x (array like, optional) :
                Sets the time, height, latitude and longitude for which
                the data will be read.
            N, K, J, I (array like, optional) :
                Sets the temporal, vertical, meridional and zonal
                indices for which the data will be read.
            var (string, optional) :
                Indicates which variable of the grid will be read. If
                the parameter is a list of variables, then the data will
                be returned as a list of arrays.
            nonan (boolean, optional) :
                If set to true (default) changes data values containing
                NaN to zero, preserving the mask.
            result (string, optional) :
                Determines wheter all time, height, latitude, longitude
                and data will be returned ('full', default), if
                temporal, vertical, meridional and zonal indices
                are returned instead ('indices'), or if only
                variable data is returned ('var only').
            components (list, optional) :
                A list containing which components will be included in
                the calculation. Options are the seasonal cycle
                ('seasonal'), westward propagating planetary waves
                ('planetary'), eddy fields ('eddy') and noise ('noise').
            profile (boolean, optional) :
                Sets whether the status is send to screen.
            dummy (boolean, optional) :
                If set to true, does not load data and returns the shape
                of the array that would have been returned.

        RETURNS
            t, z, y, x, dat (array like) :
                If 'result' is set to 'full', then all coordinates and
                data variables are returned.
            N, K, J, I, var (array like) :
                If 'result' is set to 'indices', then all indices and
                data variables are returned.
            dat (array like) :
                If 'result' is set to 'var only', then the data is
                returned.

        """
        global DEBUG
        t1 = time()

        # Checks input variables for consistency.
        if (t != None) & (N != None):
            raise ValueError('Both time and temporal index were provided.')
        if (z != None) & (K != None):
            raise ValueError('Both height and vertical index were provided.')
        if (y != None) & (J != None):
            raise ValueError(
                'Both latitude and meridional index were provided.')
        if (x != None) & (I != None):
            raise ValueError('Both latitude and zonal index were provided.')
        if var == None:
            var = self.params['var_list']

        # Checks for variables indices. Intersects desired input values with
        # dataset dimesion data. In this dataset, since only surface data is
        # available, the height values are always zero.
        if t != None:
            N = flatnonzero(in1d(self.variables['time'].data, t))
        elif N == None:
            N = arange(self.dimensions['n'])
        if z != None:
            K = [0]
        elif K == None:
            K = [0]
        elif K != None:
            K = [0]
        if y != None:
            J = flatnonzero(in1d(self.variables['latitude'].data, y))
        elif J == None:
            J = arange(self.dimensions['j'])
        if x != None:
            I = flatnonzero(in1d(self.variables['longitude'].data, y))
        elif I == None:
            I = arange(self.dimensions['i'])

        # Sets the shape of the data array.
        shape = (len(N), 1, len(J), len(I))
        if dummy:
            return shape
        # Selects data according to indices.
        t = self.variables['time'].data[N]
        z = self.variables['height'].data
        y = self.variables['latitude'].data[J]
        x = self.variables['longitude'].data[I]
        xx, yy = meshgrid(x, y)
        II, JJ = meshgrid(I, J)
        # Ressets variables
        Var = dict()
        if ('taux' in var) & ('tauy' in var):
            tauxy = True
        else:
            tauxy = False
        for item in var:
            if (item == 'taux') & tauxy:
                Var['tauxy'] = ma.zeros(shape, dtype=complex)
            elif (item == 'tauy') & tauxy:
                continue
            else:
                Var[item] = ma.zeros(shape)
        # Walks through every time index and loads data range from maps.
        for n, T in enumerate(t):
            t2 = time()
            if profile:
                s = '\rLoading data... %s ' % (profiler(
                    shape[0], n + 1, 0, t1, t2), )
                stdout.write(s)
                stdout.flush()
            # Reads NetCDF file
            data = netcdf(
                '%s/%s' %
                (self.params['path'], self.params['file_list'][N[n]]), 'r')
            for item in var:
                if (('lon_i' in self.params.keys()) &
                    ('lat_j' in self.params.keys())):
                    P = data.variables[item].data[0, 0, self.params['lat_j'],
                                                  self.params['lon_i']][JJ, II]
                else:
                    P = data.variables[item].data[0, 0, JJ, II]
                P[P <= self.variables[item].missing_value] = nan
                P = ma.masked_where(isnan(P), P)
                if nonan:
                    P.data[P.mask] = 0
                #
                if (item == 'taux') & tauxy:
                    Var['tauxy'][n, 0, :, :] += P[:, :]
                elif (item == 'tauy') & tauxy:
                    Var['tauxy'][n, 0, :, :] += 1j * P[:, :]
                else:
                    Var[item][n, 0, :, :] += P[:, :]

            data.close()

        # If result dictionary contains only one item, return only the value
        # of this item.
        if len(Var.keys()) == 1:
            Var = Var[Var.keys()[0]]

        if profile:
            stdout.write('\r\n')
            stdout.flush()

        if DEBUG:
            print 't: ', t
            print 'z: ', z
            print 'y:', y
            print 'x:', x
            print 'var: ', Var
            print 'N: ', N
            print 'K: ', K
            print 'J: ', J
            print 'I:', I
            print 'shape: ', shape

        if result == 'full':
            return t, z, y, x, Var
        elif result == 'indices':
            return N, K, J, I, Var
        elif result == 'var only':
            return Var
        else:
            raise Warning("Result parameter set imporperly to '%s', "
                          "assuming 'var only'." % (result))
            return Var
예제 #4
0
    def read(self,
             var,
             x=None,
             y=None,
             radius=0.,
             tlim=None,
             ylim=None,
             xlim=None,
             missions=None,
             sort=True,
             profile=True):
        """Reads dataset.
        
        PARAMETERS
            var (string) :
                Variable to be read from dataset. It also accepts
                special naming conventions in order to rename the
                original dataset variable and to load alternative
                variables in case of invalid data according to the
                syntax '[new_var_name]:var[|other_var]'.
            x, y (array like, optional) :
                List of zonal and meridional point coordinate of 
                interest.
            radius (float, optional) :
                Search radius in degrees.
            tlim, ylim, xlim  (array like, optional) :
                The temporal, meridional and zonal limits (minimum,
                maximum) for which data will be read.
            missions (array like, optional) :
                List of missions to read data from. If omitted, defaults
                available missions on dataset class intialization.
            sort (boolean optional) :
                If true, sorts the data record in order of ascendant 
                time, latitude and longitude.
            profile (boolean, optional) :
                Sets whether the status is send to screen.
        
        RETURNS
            dat (record array) :
                Record time-series of 'time', 'latitude', 'longitude', 
                selected variable and 'mission'.
        
        """
        t0 = time()
        # Checks input parameters.
        T = self.variables['time'].data
        if var.find(':') >= 0:  # Checks spetial variable syntax
            var_name, var = var.split(':')
        else:
            var_name = var
        if tlim == None:
            tlim = (T.min(), T.max())
        if (x != None) | (y != None):
            x, y = asarray(x), asarray(y)
            if x.size != y.size:
                raise ValueError('Zonal and meridional coordinate dimensions '
                                 'do not match.')
            npoints = x.size
            radius2 = radius**2
        else:
            npoints = 0
            x = y = []
            #
            if ylim == None:
                ylim = (-90., 90.)
            if xlim == None:
                xlim = (0., 360.)
            else:
                # Make sure longitude limits are between 0 and 360.
                xlim = list(lon360(asarray(xlim)))
        if missions == None:
            missions = self.params['missions']

        # First we have to select which files will be loaded, which will
        # depend on the temporal limits given in $t$.
        sel_time = flatnonzero((T >= floor(min(tlim)))
                               & (T <= ceil(max(tlim))))
        N = len(sel_time)

        # Second we will walk through each of the selected time in the dataset
        # and load the correspondant file for the available missions.
        t1 = time()
        if profile:
            s = '\rLoading data...'
            stdout.write(s)
            stdout.flush()
        # Reset important variables
        TIME, LAT, LON, VAR, MISSION = [array([])] * 5
        #
        for i, tm in enumerate(T[sel_time]):
            t2 = time()
            for (mission, dset, fname, cycle,
                 orbit) in self.attributes['time_dataset'][tm]:
                # Skips mission not in missions list.
                if mission not in missions:
                    continue
                # Uncompresses gzipped file and opens NetCDF instance.
                data = self.read_file('%s/%s/%s' %
                                      (self.params['path'], mission, fname))
                # Reads variable from NetCDF file.
                raw_time = self.read_variable(data, 'time')
                raw_lat = self.read_variable(data, 'lat')
                raw_lon = self.read_variable(data, 'lon')
                raw_dat = self.read_variable(data, var)
                # Select relevant data range according to limit parameters
                sel_from_time = ((raw_time >= min(tlim)) &
                                 (raw_time <= max(tlim)))
                if (ylim != None) | (xlim != None):
                    sel_from_limits = ones(data.dimensions['time'], dtype=bool)
                else:
                    sel_from_limits = zeros(data.dimensions['time'],
                                            dtype=bool)
                if ylim != None:
                    sel_from_limits = (sel_from_limits &
                                       ((raw_lat >= min(ylim)) &
                                        (raw_lat <= max(ylim))))
                if xlim != None:
                    sel_from_limits = (sel_from_limits &
                                       ((raw_lon >= min(xlim)) &
                                        (raw_lon <= max(xlim))))
                # Select relevant data according to points and search radius.
                sel_from_radius = zeros(data.dimensions['time'], dtype=bool)
                for xx, yy in zip(x, y):
                    distance2 = ((raw_lat - yy)**2 + (raw_lon - lon360(xx))**2)
                    sel_from_radius = sel_from_radius | (distance2 <= radius2)
                #
                sel_data = flatnonzero(sel_from_time
                                       & (sel_from_limits | sel_from_radius)
                                       & (~isnan(raw_dat)))
                _time = raw_time[sel_data]
                _lat = raw_lat[sel_data]
                _lon = raw_lon[sel_data]
                _dat = raw_dat[sel_data]
                #
                TIME = append(TIME, _time)
                LAT = append(LAT, _lat)
                LON = append(LON, _lon)
                VAR = append(VAR, _dat)
                MISSION = append(MISSION, [mission] * len(sel_data))
                #
                self.close_file(data)
            #
            # Profiling
            if profile:
                s = '\rLoading data... %s ' % (profiler(N, i + 1, t0, t1,
                                                        t2), )
                stdout.write(s)
                stdout.flush()
        #
        if profile:
            stdout.write('\n')
            stdout.flush()

        # Converts the data a structured array
        DAT = rec.fromarrays((TIME, LAT, LON, VAR, MISSION),
                             dtype=[('time', float64), ('latitude', float64),
                                    ('longitude', float64),
                                    (var_name, float64), ('mission', '|S3')])

        # Some data sorting?
        if sort:
            DAT.sort(order=('time', 'latitude', 'longitude'), axis=0)

        return DAT
예제 #5
0
    def make_index(self, profile=True):
        """."""
        t1 = time()
        if profile:
            s = '\rBuilding preliminary time array...'
            stdout.write(s)
            stdout.flush()
        
        time_mission = dict()
        time_dataset = dict()
        N = len(self.params['missions'])
        for i, mission in enumerate(self.params['missions']):
            t2 = time()
            tt1 = time()
            #
            mpath = '%s/%s' % (self.params['path'], mission)  # Mission path
            ylist = listdir(mpath)  # Year list in mission path
            Nyear = len(ylist)
            file_pattern = ('%s_%s_%s_%s_%s_(\d*)_(\d*)_(\d*)_(\d*)_(\d*)_'
                '(\d*).nc.gz') % ('GW', self.params['level'].upper(),
                self._labels[self.params['product']], self._labels[mission],
                self.params['delay'].upper())
            # Initializes time mission dictionary
            time_mission[mission] = dict(data=[], file=[])
            for j, yr in enumerate(ylist):
                tt2 = time()
                # Lists all the directories in year
                dlist = listdir('%s/%s' % (mpath, yr))
                for dset in dlist:
                    # Lists all the data files in mission in a given year and 
                    # matches it with the file pattern.
                    cur_path = '%s/%s/%s' % (mpath, yr, dset)
                    flist = listdir(cur_path)
                    flist.sort()
                    flist, match = reglist(flist, file_pattern)
                    # Convert data and product dates to matplotlib format, i.e. 
                    # days since 0001-01-01 UTC and appends to the global
                    # mission and dataset time dictionaries.
                    for k, item in enumerate(match):
                        datetime_start = dates.datestr2num(
                            '%4s-%2s-%2s %2s:%2s:%2s' % (item[0][0:4],
                            item[0][4:6], item[0][6:8], item[1][0:2],
                            item[1][2:4], item[1][4:6])
                        )
                        datetime_end = dates.datestr2num(
                            '%4s-%2s-%2s %2s:%2s:%2s' % (item[2][0:4],
                            item[2][4:6], item[2][6:8], item[3][0:2],
                            item[3][2:4], item[3][4:6])
                        )
                        time_data = (datetime_start + datetime_end) / 2.
                        cycle = int(item[4])
                        orbit = int(item[5])
                        time_mission[mission]['data'].append(time_data)
                        #
                        fname = '%s/%s/%s' % (yr, dset, flist[k])
                        descriptor = (mission, dset, fname, cycle, orbit)
                        if time_data not in time_dataset.keys():
                            time_dataset[time_data] = [descriptor]
                        else:
                            time_dataset[time_data].append(descriptor)
                        #
                        time_mission[mission]['file'].append(fname)
                #
                # Profiling
                if profile:
                    s = '\rBuilding preliminary time array for %s: %s ' % (
                        self._missions[mission], profiler(Nyear, j+1, t0, tt1,
                        tt2),
                    )
                    stdout.write(s)
                    stdout.flush()
            #
            time_mission[mission]['data'] = array(
                time_mission[mission]['data']
            )
            time_mission[mission]['file'] = array(
                time_mission[mission]['file']
            )
            # Profiling
            if profile:
                s = '\rBuilding preliminary time array... %s ' % (profiler(N,
                    i+1, t0, t1, t2),)
                stdout.write(s)
                stdout.flush()
        #
        if profile:
            stdout.write('\n')
            stdout.flush()

        return time_mission, time_dataset
예제 #6
0
    def make_index(self, profile=True):
        """."""
        t1 = time()
        if profile:
            s = '\rBuilding preliminary time array...'
            stdout.write(s)
            stdout.flush()

        time_mission = dict()
        time_dataset = dict()
        N = len(self.params['missions'])
        for i, mission in enumerate(self.params['missions']):
            t2 = time()
            tt1 = time()
            #
            mpath = '%s/%s' % (self.params['path'], mission)  # Mission path
            ylist = listdir(mpath)  # Year list in mission path
            Nyear = len(ylist)
            file_pattern = ('%s_%s_%s_%s_%s_(\d*)_(\d*)_(\d*)_(\d*)_(\d*)_'
                            '(\d*).nc.gz') % ('GW', self.params['level'].upper(
                            ), self._labels[self.params['product']],
                                              self._labels[mission],
                                              self.params['delay'].upper())
            # Initializes time mission dictionary
            time_mission[mission] = dict(data=[], file=[])
            for j, yr in enumerate(ylist):
                tt2 = time()
                # Lists all the directories in year
                dlist = listdir('%s/%s' % (mpath, yr))
                for dset in dlist:
                    # Lists all the data files in mission in a given year and
                    # matches it with the file pattern.
                    cur_path = '%s/%s/%s' % (mpath, yr, dset)
                    flist = listdir(cur_path)
                    flist.sort()
                    flist, match = reglist(flist, file_pattern)
                    # Convert data and product dates to matplotlib format, i.e.
                    # days since 0001-01-01 UTC and appends to the global
                    # mission and dataset time dictionaries.
                    for k, item in enumerate(match):
                        datetime_start = dates.datestr2num(
                            '%4s-%2s-%2s %2s:%2s:%2s' %
                            (item[0][0:4], item[0][4:6], item[0][6:8],
                             item[1][0:2], item[1][2:4], item[1][4:6]))
                        datetime_end = dates.datestr2num(
                            '%4s-%2s-%2s %2s:%2s:%2s' %
                            (item[2][0:4], item[2][4:6], item[2][6:8],
                             item[3][0:2], item[3][2:4], item[3][4:6]))
                        time_data = (datetime_start + datetime_end) / 2.
                        cycle = int(item[4])
                        orbit = int(item[5])
                        time_mission[mission]['data'].append(time_data)
                        #
                        fname = '%s/%s/%s' % (yr, dset, flist[k])
                        descriptor = (mission, dset, fname, cycle, orbit)
                        if time_data not in time_dataset.keys():
                            time_dataset[time_data] = [descriptor]
                        else:
                            time_dataset[time_data].append(descriptor)
                        #
                        time_mission[mission]['file'].append(fname)
                #
                # Profiling
                if profile:
                    s = '\rBuilding preliminary time array for %s: %s ' % (
                        self._missions[mission],
                        profiler(Nyear, j + 1, t0, tt1, tt2),
                    )
                    stdout.write(s)
                    stdout.flush()
            #
            time_mission[mission]['data'] = array(
                time_mission[mission]['data'])
            time_mission[mission]['file'] = array(
                time_mission[mission]['file'])
            # Profiling
            if profile:
                s = '\rBuilding preliminary time array... %s ' % (profiler(
                    N, i + 1, t0, t1, t2), )
                stdout.write(s)
                stdout.flush()
        #
        if profile:
            stdout.write('\n')
            stdout.flush()

        return time_mission, time_dataset
예제 #7
0
    def read(self, t=None, z=None, y=None, x=None, N=None, K=None, J=None,
        I=None, var=None, nonan=True, result='full', profile=False,
        dummy=False):
        """Reads dataset.

        PARAMETERS
            t, z, y, x (array like, optional) :
                Sets the time, height, latitude and longitude for which
                the data will be read.
            N, K, J, I (array like, optional) :
                Sets the temporal, vertical, meridional and zonal
                indices for which the data will be read.
            var (string, optional) :
                Indicates which variable of the grid will be read. If
                the parameter is a list of variables, then the data will
                be returned as a list of arrays.
            nonan (boolean, optional) :
                If set to true (default) changes data values containing
                NaN to zero, preserving the mask.
            result (string, optional) :
                Determines wheter all time, height, latitude, longitude
                and data will be returned ('full', default), if
                temporal, vertical, meridional and zonal indices
                are returned instead ('indices'), or if only
                variable data is returned ('var only').
            components (list, optional) :
                A list containing which components will be included in
                the calculation. Options are the seasonal cycle
                ('seasonal'), westward propagating planetary waves
                ('planetary'), eddy fields ('eddy') and noise ('noise').
            profile (boolean, optional) :
                Sets whether the status is send to screen.
            dummy (boolean, optional) :
                If set to true, does not load data and returns the shape
                of the array that would have been returned.

        RETURNS
            t, z, y, x, dat (array like) :
                If 'result' is set to 'full', then all coordinates and
                data variables are returned.
            N, K, J, I, var (array like) :
                If 'result' is set to 'indices', then all indices and
                data variables are returned.
            dat (array like) :
                If 'result' is set to 'var only', then the data is
                returned.

        """
        global DEBUG
        t1 = time()
        
        # Checks input variables for consistency.
        if (t != None) & (N != None):
            raise ValueError('Both time and temporal index were provided.')
        if (z != None) & (K != None):
            raise ValueError('Both height and vertical index were provided.')
        if (y != None) & (J != None):
            raise ValueError(
                'Both latitude and meridional index were provided.')
        if (x != None) & (I != None):
            raise ValueError('Both latitude and zonal index were provided.')
        if var == None:
            var = self.params['var_list']

        # Checks for variables indices. Intersects desired input values with
        # dataset dimesion data. In this dataset, since only surface data is
        # available, the height values are always zero.
        if t != None:
            N = flatnonzero(in1d(self.variables['time'].data, t))
        elif N == None:
            N = arange(self.dimensions['n'])
        if z != None:
            K = [0]
        elif K == None:
            K = [0]
        elif K != None:
            K = [0]
        if y != None:
            J = flatnonzero(in1d(self.variables['latitude'].data, y))
        elif J == None:
            J = arange(self.dimensions['j'])
        if x != None:
            I = flatnonzero(in1d(self.variables['longitude'].data, y))
        elif I == None:
            I = arange(self.dimensions['i'])

        # Sets the shape of the data array.
        shape = (len(N), 1, len(J), len(I))
        if dummy:
            return shape
        # Selects data according to indices.
        t = self.variables['time'].data[N]
        z = self.variables['height'].data
        y = self.variables['latitude'].data[J]
        x = self.variables['longitude'].data[I]
        xx, yy = meshgrid(x, y)
        II, JJ = meshgrid(I, J)
        # Ressets variables
        Var = dict()
        if ('taux' in var) & ('tauy' in var):
            tauxy = True
        else:
            tauxy = False
        for item in var:
            if (item == 'taux') & tauxy:
                Var['tauxy'] = ma.zeros(shape, dtype=complex)
            elif (item == 'tauy') & tauxy:
                continue
            else:
                Var[item] = ma.zeros(shape)
        # Walks through every time index and loads data range from maps.
        for n, T in enumerate(t):
            t2 = time()
            if profile:
                s = '\rLoading data... %s ' % (profiler(shape[0], n + 1, 0, 
                    t1, t2),)
                stdout.write(s)
                stdout.flush()
            # Reads NetCDF file
            data = netcdf('%s/%s' % (self.params['path'],
                self.params['file_list'][N[n]]), 'r')
            for item in var:
                if (('lon_i' in self.params.keys()) &
                    ('lat_j' in self.params.keys())):
                    P = data.variables[item].data[0, 0, self.params['lat_j'],
                        self.params['lon_i']][JJ, II]
                else:
                    P = data.variables[item].data[0, 0, JJ, II]
                P[P <= self.variables[item].missing_value] = nan
                P = ma.masked_where(isnan(P), P)
                if nonan:
                    P.data[P.mask] = 0
                #
                if (item == 'taux') & tauxy:
                    Var['tauxy'][n, 0, :, :] += P[:, :]
                elif (item == 'tauy') & tauxy:
                    Var['tauxy'][n, 0, :, :] += 1j * P[:, :]
                else:
                    Var[item][n, 0, :, :] += P[:, :]
            
            data.close()
        
        # If result dictionary contains only one item, return only the value
        # of this item.
        if len(Var.keys()) == 1:
            Var = Var[Var.keys()[0]]
        
        if profile:
            stdout.write('\r\n')
            stdout.flush()
        
        if DEBUG:
            print 't: ', t
            print 'z: ', z
            print 'y:', y
            print 'x:', x
            print 'var: ', Var
            print 'N: ', N
            print 'K: ', K
            print 'J: ', J
            print 'I:', I
            print 'shape: ', shape
        
        if result == 'full':
            return t, z, y, x, Var
        elif result == 'indices':
            return N, K, J, I, Var
        elif result == 'var only':
            return Var
        else:
            raise Warning("Result parameter set imporperly to '%s', "
                "assuming 'var only'." % (result))
            return Var
예제 #8
0
파일: aviso.py 프로젝트: regeirk/atlantis
    def read(self,
             t=None,
             z=None,
             y=None,
             x=None,
             N=None,
             K=None,
             J=None,
             I=None,
             var=None,
             nonan=True,
             result='full',
             profile=False,
             dummy=False):
        """Reads dataset.

        PARAMETERS
            t, z, y, x (array like, optional) :
                Sets the time, height, latitude and longitude for which
                the data will be read.
            N, K, J, I (array like, optional) :
                Sets the temporal, vertical, meridional and zonal
                indices for which the data will be read.
            var (string, optional) :
                Indicates which variable of the grid will be read. If
                the parameter is a list of variables, then the data will
                be returned as a list of arrays.
            nonan (boolean, optional) :
                If set to true (default) changes data values containing
                NaN to zero, preserving the mask.
            result (string, optional) :
                Determines wheter all time, height, latitude, longitude
                and data will be returned ('full', default), if
                temporal, vertical, meridional and zonal indices
                are returned instead ('indices'), or if only
                variable data is returned ('var only').
            profile (boolean, optional) :
                Sets whether the status is send to screen.
            dummy (boolean, optional) :
                If set to true, does not load data and returns the shape
                of the array that would have been returned.

        RETURNS
            t, z, y, x, dat (array like) :
                If 'result' is set to 'full', then all coordinates and
                data variables are returned.
            N, K, J, I, var (array like) :
                If 'result' is set to 'indices', then all indices and
                data variables are returned.
            dat (array like) :
                If 'result' is set to 'var only', then the data is
                returned.

        """
        global DEBUG
        t1 = time()

        # Checks input variables for consistency.
        if (t != None) & (N != None):
            raise ValueError('Both time and temporal index were provided.')
        if (z != None) & (K != None):
            raise ValueError('Both height and vertical index were provided.')
        if (y != None) & (J != None):
            raise ValueError(
                'Both latitude and meridional index were provided.')
        if (x != None) & (I != None):
            raise ValueError('Both latitude and zonal index were provided.')
        if var == None:
            var = self.params['var_list']

        # Checks for variables indices. Intersects desired input values with
        # dataset dimesion data. In this dataset, since only surface data is
        # available, the height values are always zero.
        if t != None:
            N = flatnonzero(in1d(self.variables['time'].data, t))
        elif N == None:
            N = arange(self.dimensions['n'])
        if z != None:
            K = [0]
        elif K == None:
            K = [0]
        elif K != None:
            K = [0]
        if y != None:
            J = flatnonzero(in1d(self.variables['latitude'].data, y))
        elif J == None:
            J = arange(self.dimensions['j'])
        if x != None:
            I = flatnonzero(in1d(self.variables['longitude'].data, x))
        elif I == None:
            I = arange(self.dimensions['i'])

        # Sets the shape of the data array.
        shape = (len(N), 1, len(J), len(I))
        if dummy:
            return shape
        # Selects data according to indices.
        t = self.variables['time'].data[N]
        z = self.variables['height'].data
        y = self.variables['latitude'].data[J]
        x = self.variables['longitude'].data[I]
        xx, yy = meshgrid(x, y)
        II, JJ = meshgrid(I, J)

        # Ressets variables
        Var = dict()
        Datasets = dict()
        for item in var:
            Var[item] = ma.zeros(shape)
            try:
                Datasets[self.params['var_tcid'][item][0]][1].append(
                    self.params['var_tcid'][item][2])
            except:
                Datasets[self.params['var_tcid'][item][0]] = [
                    self.params['var_tcid'][item][1],
                    [self.params['var_tcid'][item][2]]
                ]

        # Walks through every time index and loads data range from maps.
        for n, T in enumerate(t):
            t2 = time()
            if profile:
                s = '\rLoading data... %s ' % (profiler(
                    shape[0], n + 1, 0, t1, t2), )
                stdout.write(s)
                stdout.flush()

            # Reads NetCDF file for each dataset
            for Dataset, (Datavar, Datagrid) in Datasets.items():
                params = dict(path=self.params['path'],
                              dataset=Dataset,
                              datavar=Datavar,
                              **self.params['file_list'][N[n]])
                fname = self.create_filename(**params)
                data = self.read_file(fname)
                #
                for Grid in Datagrid:
                    nvar = self.params['var_dict']['{0}_{1}'.format(
                        Dataset, Grid)]
                    if (('lon_i' in self.params.keys()) &
                        ('lat_j' in self.params.keys())):
                        P = data.variables[Grid].data.T[
                            self.params['lat_j'], self.params['lon_i']][JJ, II]
                    else:
                        P = data.variables[Grid].data.T[JJ, II]
                    P[P >= self.variables[item].missing_value] = nan
                    P = ma.masked_where(isnan(P), P)
                    if nonan:
                        P.data[P.mask] = 0
                    #
                    Var[nvar][n, 0, :, :] += P[:, :]
                #
                self.close_file(data)

        # If result dictionary contains only one item, return only the value
        # of this item.
        if len(Var.keys()) == 1:
            Var = Var[Var.keys()[0]]

        if profile:
            stdout.write('\r\n')
            stdout.flush()

        if DEBUG:
            print 't: ', t
            print 'z: ', z
            print 'y:', y
            print 'x:', x
            print 'var: ', Var
            print 'N: ', N
            print 'K: ', K
            print 'J: ', J
            print 'I:', I
            print 'shape: ', shape

        if result == 'full':
            return t, z, y, x, Var
        elif result == 'indices':
            return N, K, J, I, Var
        elif result == 'var only':
            return Var
        else:
            raise Warning("Result parameter set imporperly to '%s', "
                          "assuming 'var only'." % (result))
            return Var
예제 #9
0
    def __init__(self, delay='dt', missions=None, zone='global',
        product='sla', variable='vxxc', path=None, profile=True):
        """
        Initializes the dataset class for reading along-track gridded
        sequential data from the SSALTO/DUACS distributed by Aviso.

        PARAMETERS
            delay (text, optional) :
                Selects whether delayed time products (dt, default)
                or near-real time products are read.
            missions (text, array like, optional) :
                Determines the satellite missions to be selected (i. e.
                e1, e2, tp, tpn, g2, j1, j1n, j2, en, enn, c2, al) If
                set to 'none', all available missions are used.
            zone (text, optional) :
                Geographic coverage of the selected products,
                    global -- Global geographic coverage;
                    med -- Mediterranean;
                    blacksea -- Black Sea;
                    moz -- Mozambique;
                    arctic -- Arctic;
                    europe -- Europe.
            product (text, optional) :
                Variable to be read (sla -- sea level anomaly or
                adt -- absolute dynamic topography)
            variable (text, optional) :
                Either 'vfec' for validated, filtered, sub-sampled and
                LWE-corrected; or 'vxxc' for validated, non-filtered,
                non-sub-sampled and LWE-corrected data.
            path (text, optional) :
                Path to the dataset files.
        
        """
        t0 = time()
        # Checks all the input parameters for consistency
        if delay not in self._delays.keys():
            raise ValueError('Invalid delay parameter "%s".' % (delay))
        if missions == None:
            missions = self._missions.keys()
        elif type(missions) == str:
            if missions in self._missions.keys():
                missions = [missions]
            else:
                raise ValueError('Invalid mission "%s".' % (missions))
        elif type(missions) == list:
            for item in missions:
                if item not in self._missions.keys():
                    raise ValueError('Invalid mission "%s".' % (item))
        else:
            raise ValueError('Invalid mission "%s".' % (missions))
        if zone not in self._zones.keys():
            raise ValueError('Invalid geographic zone "%s".' % (zone))
        if product not in self._products.keys():
            raise ValueError('Invalid product "%s".' % (product))
        if variable not in self._filterings.keys():
            raise ValueError('Invalid variable "%s".' % (variable))
        
        # Initializes parameters and attributes in class variable
        self.attributes = dict()
        self.dimensions = dict(n=0, k=0, j=0, i=0)
        self.coordinates = dict(n=None, k=None, j=None, i=None)
        self.variables = dict()
        self.params = dict(
            delay = delay,
            missions = missions,
            zone = zone,
            product = product,
            variable = variable
        )

        # Creates an universally unique identifiers (UUID) for this instance
        self.params['uuid'] = str(uuid())

        # Sets path and missing value parameters
        if path == None:
            path = '%s/%s/%s/%s/%s' % ('/academia/data/raw/aviso', 
                self._delays[delay], 'along-track', self._filterings[variable],
                product)
        self.params['path'] = path
        self.params['missing_value'] = -9999.
        
        # Determines the temporal range of the whole data set per mission
        t1 = time()
        if profile:
            s = '\rBuilding preliminary time array...'
            stdout.write(s)
            stdout.flush()
        
        time_mission = dict()
        time_dataset = dict()
        N = len(self.params['missions'])
        for i, mission in enumerate(self.params['missions']):
            t2 = time()
            #
            mpath = '%s/%s' % (path, mission)  # Mission path
            ylist = listdir(mpath)  # Year list in mission path
            file_pattern = '%s_%s_%s_%s_%s_(\d*)_(\d*).nc.gz' % (delay, zone, 
                mission, product, variable)
            time_mission[mission] = dict(data=[], product=[], file=[])
            for yr in ylist:
                # Lists all the data files in mission in a given year and 
                # matches it with the file pattern.
                flist = listdir('%s/%s' % (mpath, yr))
                flist.sort()
                flist, match = reglist(flist, file_pattern)
                # Convert data and product dates to matplotlib format, i.e. 
                # days since 0001-01-01 UTC and appends to the global mission
                # and dataset time dictionaries.
                for j, item in enumerate(match):
                    time_data = dates.datestr2num('%4s-%2s-%2s 12:00' % 
                        (item[0][:4], item[0][4:6], item[0][6:]))
                    time_mission[mission]['data'].append(time_data)
                    fname = '%s/%s' % (yr, flist[j])
                    descriptor = (mission, fname)
                    if time_data not in time_dataset.keys():
                        time_dataset[time_data] = [descriptor]
                    else:
                        time_dataset[time_data].append(descriptor)
                    #
                    time_product = dates.datestr2num('%4s-%2s-%2s 12:00' % 
                        (item[1][:4], item[1][4:6], item[1][6:]))
                    time_mission[mission]['product'].append(time_product)
                    #
                    time_mission[mission]['file'].append(fname)
            #
            time_mission[mission]['data'] = array(
                time_mission[mission]['data']
            )
            time_mission[mission]['product'] = array(
                time_mission[mission]['product']
            )
            time_mission[mission]['file'] = array(
                time_mission[mission]['file']
            )
            # Profiling
            if profile:
                s = '\rBuilding preliminary time array... %s ' % (profiler(N, 
                    i+1, t0, t1, t2),)
                stdout.write(s)
                stdout.flush()
        #
        if profile:
            stdout.write('\n')
            stdout.flush()
        #
        self.attributes['time_mission'] = time_mission
        self.attributes['time_dataset'] = time_dataset
        
        # Updates dimensions, coordinates and creates time variable
        self.dimensions['n'] = len(time_dataset)
        self.coordinates['n'] ='time'
        self.variables['time'] = atlantis.data.variable(
            canonical_units = 'days since 0001-01-01 UTC',
            data = array(sorted(time_dataset.keys())),
            height = atlantis.data.get_standard_variable('height', data=[0.]),
            latitude = atlantis.data.get_standard_variable('latitude'),
            longitude = atlantis.data.get_standard_variable('longitude'),
        )
        return None
예제 #10
0
    def read(self, x=None, y=None, radius=0., tlim=None, ylim=None, xlim=None,
            missions=None, sort=True, profile=True):
        """Reads dataset.
        
        PARAMETERS
            x, y (array like, optional) :
                List of zonal and meridional point coordinate of 
                interest.
            radius (float, optional) :
                Search radius in degrees.
            tlim, ylim, xlim  (array like, optional) :
                The temporal, meridional and zonal limits (minimum,
                maximum) for which data will be read.
            missions (array like, optional) :
                List of missions to read data from. If omitted, defaults
                available missions on dataset class intialization.
            sort (boolean optional) :
                If true, sorts the data record in order of ascendant 
                time, latitude and longitude.
            profile (boolean, optional) :
                Sets whether the status is send to screen.
        
        RETURNS
            dat (record array) :
                Record time-series of 'time', 'latitude', 'longitude', 
                selected variable and 'mission'.
        
        """
        t0 = time()
        # Checks input parameters.
        T = self.variables['time'].data
        if tlim == None:
            tlim = (T.min(), T.max())
        if (x != None) | (y != None):
            x, y = asarray(x), asarray(y)
            if x.size != y.size:
                raise ValueError('Zonal and meridional coordinate dimensions '
                    'do not match.')
            npoints = x.size
            radius2 = radius ** 2
        else:
            npoints = 0
            x = y = []
            #
            if ylim == None:
                ylim = (-90., 90.)
            if xlim == None:
                xlim = (0., 360.)
            else:
                # Make sure longitude limits are between 0 and 360.
                xlim = list(lon360(asarray(xlim)))
        if missions == None:
            missions = self.params['missions']
        
        # Aviso uses time in days since 1950-01-01 00:00:00 UTC, therefore
        # we have to calculate the initial time in matplotlib's format. We
        # also have to determine the proper variable using product name.
        T0 = dates.datestr2num('1950-01-01 00:00:00 UTC')
        var = self.params['product'].upper()
        
        # First we have to select which files will be loaded, which will 
        # depend on the temporal limits given in $t$.
        sel_time = flatnonzero((T >= floor(min(tlim))) & 
            (T <= ceil(max(tlim))))
        N = len(sel_time)
        
        # Second we will walk through each of the selected time in the dataset
        # and load the correspondant file for the available missions.
        t1 = time()
        if profile:
            s = '\rLoading data...'
            stdout.write(s)
            stdout.flush()
        # Reset important variables
        TIME, LAT, LON, VAR, MISSION = [array([])] * 5
        #
        for i, tm in enumerate(T[sel_time]):
            t2 = time()
            for (mission, fname) in self.attributes['time_dataset'][tm]:
                # Skips mission not in missions list.
                if mission not in missions:
                    continue
                # Uncompresses gzipped file and opens NetCDF instance.
                data = self.read_file('%s/%s/%s' % (self.params['path'], 
                    mission, fname))
                # Retrieve the scale factor for each variable
                scale_lat = data.variables['latitude'].scale_factor
                scale_lon = data.variables['latitude'].scale_factor
                scale_dat = data.variables[var].scale_factor
                # Get the raw time, latitude and longitude
                raw_time = data.variables['time'].data + T0
                raw_lat = data.variables['latitude'].data * scale_lat
                raw_lon = data.variables['longitude'].data * scale_lon
                # Select relevant data range according to limit parameters
                sel_from_time = (
                    (raw_time >= min(tlim)) & (raw_time <= max(tlim))
                )
                sel_from_limits = zeros(data.dimensions['time'], dtype=bool)
                if ylim != None:
                    sel_from_limits = (sel_from_limits | 
                        ((raw_lat >= min(ylim)) & (raw_lat <= max(ylim))))
                if xlim != None:
                    sel_from_limits = (sel_from_limits | 
                        ((raw_lon >= min(xlim)) & (raw_lon <= max(xlim))))
                # Select relevant data according to points and search radius.
                sel_from_radius =  zeros(data.dimensions['time'], dtype=bool)
                for xx, yy in zip(x, y):
                    distance2 = ((raw_lat - yy) ** 2 + 
                        (raw_lon - lon360(xx)) ** 2)
                    sel_from_radius = sel_from_radius | (distance2 <= radius2)
                #
                sel_data = flatnonzero(sel_from_time & 
                    (sel_from_limits | sel_from_radius))
                _time = raw_time[sel_data]
                _lat = raw_lat[sel_data]
                _lon = raw_lon[sel_data]
                _dat = data.variables[var].data[sel_data] * scale_dat
                #
                TIME = append(TIME, _time)
                LAT = append(LAT, _lat)
                LON = append(LON, _lon)
                VAR = append(VAR, _dat)
                MISSION = append(MISSION, [mission] * len(sel_data))
                #
                self.close_file(data)
            #
            # Profiling
            if profile:
                s = '\rLoading data... %s ' % (profiler(N, i+1, t0, t1, t2),)
                stdout.write(s)
                stdout.flush()
        #
        if profile:
            stdout.write('\n')
            stdout.flush()

        # Converts the data a structured array
        DAT = rec.fromarrays((TIME, LAT, LON, VAR, MISSION), 
            dtype=[('time', float64), ('latitude', float64), 
            ('longitude', float64), (self.params['product'], float64), 
            ('mission', '|S3')])
        #DAT = hstack((TIME[:, None], LAT[:, None], LON[:, None], 
        #    VAR[:, None], MISSION[:, None])).view(dtype=[('time', float64), 
        #    ('latitude', float64), ('longitude', float64), 
        #    (self.params['product'], float64), ('mission', '|S3')])
        
        # Some data sorting?
        if sort:
            DAT.sort(order=('time', 'latitude', 'longitude'), axis=0)
        
        return DAT