예제 #1
0
    def test_smoke_no_transform(self, device):
        x_data = torch.rand(1, 2, 3, 4).to(device)
        batch_prob = torch.rand(1) < 0.5
        start_points = torch.rand(1, 4, 2).to(device)
        end_points = torch.rand(1, 4, 2).to(device)

        params = dict(batch_prob=batch_prob,
                      start_points=start_points,
                      end_points=end_points)
        out_data = F.apply_perspective(x_data, params, return_transform=False)

        assert out_data.shape == x_data.shape
예제 #2
0
    def test_smoke(self, device):
        x_data = torch.rand(1, 2, 3, 4).to(device)
        batch_prob = torch.rand(1) < 0.5
        start_points = torch.rand(1, 4, 2).to(device)
        end_points = torch.rand(1, 4, 2).to(device)

        params = dict(batch_prob=batch_prob,
                      start_points=start_points,
                      end_points=end_points,
                      interpolation=torch.tensor(1))
        out_data = F.apply_perspective(x_data, params)

        assert out_data.shape == x_data.shape
예제 #3
0
    def test_smoke_transform(self, device):
        x_data = torch.rand(1, 2, 3, 4).to(device)
        batch_prob = torch.rand(1) < 0.5
        start_points = torch.rand(1, 4, 2).to(device)
        end_points = torch.rand(1, 4, 2).to(device)

        params = dict(batch_prob=batch_prob,
                      start_points=start_points,
                      end_points=end_points)
        out_data = F.apply_perspective(x_data, params, return_transform=True)

        assert isinstance(out_data, tuple)
        assert len(out_data) == 2
        assert out_data[0].shape == x_data.shape
        assert out_data[1].shape == (1, 3, 3)