def apply_adjust_gamma(input: torch.Tensor, params: Dict[str, torch.Tensor]) -> torch.Tensor: r"""Perform gamma correction on an image. Args: input (torch.Tensor): Tensor to be transformed with shape :math:`(*, C, H, W)`. params (Dict[str, torch.Tensor]): - params['gamma_factor']: Non negative real number, same as γ\gammaγ in the equation. gamma larger than 1 make the shadows darker, while gamma smaller than 1 make dark regions lighter. Returns: torch.Tensor: Adjusted image with shape :math:`(B, C, H, W)`. """ transformed = adjust_gamma(input, params['gamma_factor'].to(input.dtype)) return transformed
def apply_adjust_gamma(input: torch.Tensor, params: Dict[str, torch.Tensor]) -> torch.Tensor: r"""Perform gamma correction on an image. Args: input (torch.Tensor): Tensor to be transformed with shape (H, W), (C, H, W), (B, C, H, W). params (Dict[str, torch.Tensor]): - params['gamma_factor']: Non negative real number, same as γ\gammaγ in the equation. gamma larger than 1 make the shadows darker, while gamma smaller than 1 make dark regions lighter. Returns: torch.Tensor: Adjusted image. """ input = _transform_input(input) _validate_input_dtype(input, accepted_dtypes=[torch.float16, torch.float32, torch.float64]) transformed = adjust_gamma(input, params['gamma_factor'].to(input.dtype)) return transformed