def apply_equalize3d(input: torch.Tensor, params: Dict[str, torch.Tensor]) -> torch.Tensor: r"""Equalize a tensor volume or a batch of tensors volumes with given random parameters. Args: input (torch.Tensor): Tensor to be transformed with shape :math:`(*, C, D, H, W)`. params (Dict[str, torch.Tensor]): shall be empty. Returns: torch.Tensor: Equalized input with shape :math:`(*, C, D, H, W)`. """ return equalize3d(input)
def apply_equalize3d(input: torch.Tensor, params: Dict[str, torch.Tensor]) -> torch.Tensor: r"""Equalize a tensor volume or a batch of tensors volumes with given random parameters. Args: input (torch.Tensor): Tensor to be transformed with shape :math:`(D, H, W)`, :math:`(C, D, H, W)`, :math:`(*, C, D, H, W)`. params (Dict[str, torch.Tensor]): shall be empty. Returns: torch.Tensor: The equalized input. :math:`(D, H, W)`, :math:`(C, D, H, W)`, :math:`(*, C, D, H, W)`. """ input = _transform_input3d(input) _validate_input_dtype( input, accepted_dtypes=[torch.float16, torch.float32, torch.float64]) return equalize3d(input)
def apply_transform( self, input: Tensor, params: Dict[str, Tensor], transform: Optional[Tensor] = None ) -> Tensor: return equalize3d(input)