def test_exception(self, device, dtype): input = torch.ones(1, 1, 3, 4, device=device, dtype=dtype) kernel = torch.ones(3, 3, device=device, dtype=dtype) with pytest.raises(TypeError): assert gradient([0.], kernel) with pytest.raises(TypeError): assert gradient(input, [0.]) with pytest.raises(ValueError): test = torch.ones(2, 3, 4, device=device, dtype=dtype) assert gradient(test, kernel) with pytest.raises(ValueError): test = torch.ones(2, 3, 4, device=device, dtype=dtype) assert gradient(input, test)
def test_exception(self, dev_str, dtype_str, call): input_ = ivy.ones((1, 1, 3, 4), dev_str=dev_str, dtype_str=dtype_str) kernel = ivy.ones((3, 3), dev_str=dev_str, dtype_str=dtype_str) with pytest.raises(ValueError): test = ivy.ones((2, 3, 4), dev_str=dev_str, dtype_str=dtype_str) assert gradient(test, kernel) with pytest.raises(ValueError): test = ivy.ones((2, 3, 4), dev_str=dev_str, dtype_str=dtype_str) assert gradient(input_, test) if call is not helpers.torch_call: return with pytest.raises(TypeError): assert gradient([0.], kernel) with pytest.raises(TypeError): assert gradient(input_, [0.])
def test_value(self, device, dtype): input = torch.tensor( [[0.5, 1., 0.3], [0.7, 0.3, 0.8], [0.4, 0.9, 0.2]], device=device, dtype=dtype)[None, None, :, :] kernel = torch.tensor([[0., 1., 0.], [1., 1., 1.], [0., 1., 0.]], device=device, dtype=dtype) expected = torch.tensor( [[0.5, 0.7, 0.7], [0.4, 0.7, 0.6], [0.5, 0.7, 0.7]], device=device, dtype=dtype)[None, None, :, :] assert_allclose(gradient(input, kernel), expected)
def test_value(self, device, dtype): tensor = torch.tensor( [[0.5, 1.0, 0.3], [0.7, 0.3, 0.8], [0.4, 0.9, 0.2]], device=device, dtype=dtype)[None, None, :, :] kernel = torch.tensor( [[-1.0, 0.0, -1.0], [0.0, 0.0, 0.0], [-1.0, 0.0, -1.0]], device=device, dtype=dtype) expected = torch.tensor( [[0.5, 0.7, 0.7], [0.4, 0.7, 0.6], [0.5, 0.7, 0.7]], device=device, dtype=dtype)[None, None, :, :] assert_allclose(gradient(tensor, kernel), expected)
def test_cardinality(self, dev_str, dtype_str, call, shape, kernel): img = ivy.ones(shape, dtype_str=dtype_str, dev_str=dev_str) krnl = ivy.ones(kernel, dtype_str=dtype_str, dev_str=dev_str) assert gradient(img, krnl).shape == shape
def test_cardinality(self, device, dtype, shape, kernel): img = torch.ones(shape, device=device, dtype=dtype) krnl = torch.ones(kernel, device=device, dtype=dtype) assert gradient(img, krnl).shape == shape