예제 #1
0
class TorqueExample:
    def __init__(self, router, router_real_time):

        self.expected_number_of_actuators = 7  # example works for 7dof Gen3
        # self.torque_amplification = 2.0  # Torque measure on 7th actuator is sent as a command to first actuator
        self.torque_amplification = 20.0  # Torque measure on 7th actuator is sent as a command to first actuator

        # Create required services
        device_manager = DeviceManagerClient(router)
        
        self.actuator_config = ActuatorConfigClient(router)
        self.base = BaseClient(router)
        self.base_cyclic = BaseCyclicClient(router_real_time)

        self.base_command = BaseCyclic_pb2.Command()
        self.base_feedback = BaseCyclic_pb2.Feedback()
        self.base_custom_data = BaseCyclic_pb2.CustomData()

        # Detect all devices
        device_handles = device_manager.ReadAllDevices()
        self.actuator_count = 0

        # Only actuators are relevant for this example
        for handle in device_handles.device_handle:
            if handle.device_type == Common_pb2.BIG_ACTUATOR or handle.device_type == Common_pb2.SMALL_ACTUATOR:
                self.base_command.actuators.add()
                self.base_feedback.actuators.add()
                self.actuator_count += 1

        # Change send option to reduce max timeout at 3ms
        self.sendOption = RouterClientSendOptions()
        self.sendOption.andForget = False
        self.sendOption.delay_ms = 0
        self.sendOption.timeout_ms = 3

        self.cyclic_t_end = 30  #Total duration of the thread in seconds. 0 means infinite.
        self.cyclic_thread = {}

        self.kill_the_thread = False
        self.already_stopped = False
        self.cyclic_running = False

    def MoveToHomePosition(self):
        # Make sure the arm is in Single Level Servoing mode
        base_servo_mode = Base_pb2.ServoingModeInformation()
        base_servo_mode.servoing_mode = Base_pb2.SINGLE_LEVEL_SERVOING
        self.base.SetServoingMode(base_servo_mode)
    
        # Move arm to ready position
        print("Moving the arm to a safe position")
        action_type = Base_pb2.RequestedActionType()
        action_type.action_type = Base_pb2.REACH_JOINT_ANGLES
        action_list = self.base.ReadAllActions(action_type)
        action_handle = None
        for action in action_list.action_list:
            if action.name == "Home":
                action_handle = action.handle

        if action_handle == None:
            print("Can't reach safe position. Exiting")
            return False

        self.base.ExecuteActionFromReference(action_handle)
        time.sleep(20) # Leave time to action to complete
        return True

    def InitCyclic(self, sampling_time_cyclic, t_end, print_stats):

        if self.cyclic_running:
            return True

        # Move to Home position first
        if not self.MoveToHomePosition():
            return False

        print("Init Cyclic")
        sys.stdout.flush()

        base_feedback = self.SendCallWithRetry(self.base_cyclic.RefreshFeedback, 3)
        if base_feedback:
            self.base_feedback = base_feedback
            if len(self.base_feedback.actuators) == self.expected_number_of_actuators:

                # Init command frame
                for x in range(self.actuator_count):
                    self.base_command.actuators[x].flags = 1  # servoing
                    self.base_command.actuators[x].position = self.base_feedback.actuators[x].position

                # First actuator is going to be controlled in torque
                # To ensure continuity, torque command is set to measure
                self.base_command.actuators[0].torque_joint = self.base_feedback.actuators[0].torque

                # Set arm in LOW_LEVEL_SERVOING
                base_servo_mode = Base_pb2.ServoingModeInformation()
                base_servo_mode.servoing_mode = Base_pb2.LOW_LEVEL_SERVOING
                self.base.SetServoingMode(base_servo_mode)

                # Send first frame
                self.base_feedback = self.base_cyclic.Refresh(self.base_command, 0, self.sendOption)

                # Set first actuator in torque mode now that the command is equal to measure
                control_mode_message = ActuatorConfig_pb2.ControlModeInformation()
                control_mode_message.control_mode = ActuatorConfig_pb2.ControlMode.Value('TORQUE')
                device_id = 1  # first actuator as id = 1

                self.SendCallWithRetry(self.actuator_config.SetControlMode, 3, control_mode_message, device_id)

                # Init cyclic thread
                self.cyclic_t_end = t_end
                self.cyclic_thread = threading.Thread(target=self.RunCyclic, args=(sampling_time_cyclic, print_stats))
                self.cyclic_thread.daemon = True
                self.cyclic_thread.start()
                return True
            else:
                print("InitCyclic: number of actuators in base_feedback does not match expected number")
                return False
        else:
            print("InitCyclic: failed to communicate")
            return False

    def RunCyclic(self, t_sample, print_stats):
        self.cyclic_running = True
        print("Run Cyclic")
        sys.stdout.flush()
        cyclic_count = 0  # Counts refresh
        stats_count = 0  # Counts stats prints
        failed_cyclic_count = 0  # Count communication timeouts

        # Initial delta between first and last actuator
        init_delta_position = self.base_feedback.actuators[0].position - self.base_feedback.actuators[6].position

        # Initial first and last actuator torques; avoids unexpected movement due to torque offsets
        init_last_torque = self.base_feedback.actuators[6].torque
        init_first_torque = -self.base_feedback.actuators[0].torque  # Torque measure is reversed compared to actuator direction

        t_now = time.time()
        t_cyclic = t_now  # cyclic time
        t_stats = t_now  # print  time
        t_init = t_now  # init   time

        print("Running torque control example for {} seconds".format(self.cyclic_t_end))

        while not self.kill_the_thread:
            t_now = time.time()

            # Cyclic Refresh
            if (t_now - t_cyclic) >= t_sample:
                t_cyclic = t_now
                # Position command to first actuator is set to measured one to avoid following error to trigger
                # Bonus: When doing this instead of disabling the following error, if communication is lost and first
                #        actuator continue to move under torque command, resulting position error with command will
                #        trigger a following error and switch back the actuator in position command to hold its position
                self.base_command.actuators[0].position = self.base_feedback.actuators[0].position

                # First actuator torque command is set to last actuator torque measure times an amplification
                # self.base_command.actuators[0].torque_joint = init_first_torque + \
                #     self.torque_amplification * (self.base_feedback.actuators[6].torque - init_last_torque)
                self.base_command.actuators[0].torque_joint = 5.0
                print(self.base_command.actuators[0].torque_joint)
                # First actuator position is sent as a command to last actuator
                self.base_command.actuators[6].position = self.base_feedback.actuators[0].position - init_delta_position

                # Incrementing identifier ensure actuators can reject out of time frames
                self.base_command.frame_id += 1
                if self.base_command.frame_id > 65535:
                    self.base_command.frame_id = 0
                for i in range(self.expected_number_of_actuators):
                    self.base_command.actuators[i].command_id = self.base_command.frame_id

                # Frame is sent
                try:
                    self.base_feedback = self.base_cyclic.Refresh(self.base_command, 0, self.sendOption)
                except:
                    failed_cyclic_count = failed_cyclic_count + 1
                    print("failed")
                cyclic_count = cyclic_count + 1

            # Stats Print
            if print_stats and ((t_now - t_stats) > 1):
                t_stats = t_now
                stats_count = stats_count + 1
                
                cyclic_count = 0
                failed_cyclic_count = 0
                sys.stdout.flush()

            if self.cyclic_t_end != 0 and (t_now - t_init > self.cyclic_t_end):
                print("Cyclic Finished")
                sys.stdout.flush()
                break
        self.cyclic_running = False
        return True

    def StopCyclic(self):
        print ("Stopping the cyclic and putting the arm back in position mode...")
        if self.already_stopped:
            return

        # Kill the  thread first
        if self.cyclic_running:
            self.kill_the_thread = True
            self.cyclic_thread.join()
        
        # Set first actuator back in position mode
        control_mode_message = ActuatorConfig_pb2.ControlModeInformation()
        control_mode_message.control_mode = ActuatorConfig_pb2.ControlMode.Value('POSITION')
        device_id = 1  # first actuator has id = 1
        self.SendCallWithRetry(self.actuator_config.SetControlMode, 3, control_mode_message, device_id)
        
        base_servo_mode = Base_pb2.ServoingModeInformation()
        base_servo_mode.servoing_mode = Base_pb2.SINGLE_LEVEL_SERVOING
        self.base.SetServoingMode(base_servo_mode)
        self.cyclic_t_end = 0.1

        self.already_stopped = True
        
        print('Clean Exit')

    @staticmethod
    def SendCallWithRetry(call, retry,  *args):
        i = 0
        arg_out = []
        while i < retry:
            try:
                arg_out = call(*args)
                break
            except:
                i = i + 1
                continue
        if i == retry:
            print("Failed to communicate")
        return arg_out
예제 #2
0
class GripperLowLevelExample:
    def __init__(self, router, router_real_time, proportional_gain=2.0):
        """
            GripperLowLevelExample class constructor.

            Inputs:
                kortex_api.RouterClient router:            TCP router
                kortex_api.RouterClient router_real_time:  Real-time UDP router
                float proportional_gain: Proportional gain used in control loop (default value is 2.0)

            Outputs:
                None
            Notes:
                - Actuators and gripper initial position are retrieved to set initial positions
                - Actuator and gripper cyclic command objects are created in constructor. Their
                  references are used to update position and speed.
        """

        self.proportional_gain = proportional_gain

        ###########################################################################################
        # UDP and TCP sessions are used in this example.
        # TCP is used to perform the change of servoing mode
        # UDP is used for cyclic commands.
        #
        # 2 sessions have to be created: 1 for TCP and 1 for UDP
        ###########################################################################################

        self.router = router
        self.router_real_time = router_real_time

        # Create base client using TCP router
        self.base = BaseClient(self.router)

        # Create base cyclic client using UDP router.
        self.base_cyclic = BaseCyclicClient(self.router_real_time)

        # Create base cyclic command object.
        self.base_command = BaseCyclic_pb2.Command()
        self.base_command.frame_id = 0
        self.base_command.interconnect.command_id.identifier = 0
        self.base_command.interconnect.gripper_command.command_id.identifier = 0

        # Add motor command to interconnect's cyclic
        self.motorcmd = self.base_command.interconnect.gripper_command.motor_cmd.add(
        )

        # Set gripper's initial position velocity and force
        base_feedback = self.base_cyclic.RefreshFeedback()
        self.motorcmd.position = base_feedback.interconnect.gripper_feedback.motor[
            0].position
        self.motorcmd.velocity = 0
        self.motorcmd.force = 100

        for actuator in base_feedback.actuators:
            self.actuator_command = self.base_command.actuators.add()
            self.actuator_command.position = actuator.position
            self.actuator_command.velocity = 0.0
            self.actuator_command.torque_joint = 0.0
            self.actuator_command.command_id = 0
            print("Position = ", actuator.position)

        # Save servoing mode before changing it
        self.previous_servoing_mode = self.base.GetServoingMode()

        # Set base in low level servoing mode
        servoing_mode_info = Base_pb2.ServoingModeInformation()
        servoing_mode_info.servoing_mode = Base_pb2.LOW_LEVEL_SERVOING
        self.base.SetServoingMode(servoing_mode_info)

    def Cleanup(self):
        """
            Restore arm's servoing mode to the one that
            was effective before running the example.

            Inputs:
                None
            Outputs:
                None
            Notes:
                None

        """
        # Restore servoing mode to the one that was in use before running the example
        self.base.SetServoingMode(self.previous_servoing_mode)

    def Goto(self, target_position):
        """
            Position gripper to a requested target position using a simple
            proportional feedback loop which changes speed according to error
            between target position and current gripper position

            Inputs:
                float target_position: position (0% - 100%) to send gripper to.
            Outputs:
                Returns True if gripper was positionned successfully, returns False
                otherwise.
            Notes:
                - This function blocks until position is reached.
                - If target position exceeds 100.0, its value is changed to 100.0.
                - If target position is below 0.0, its value is set to 0.0.
        """
        if target_position > 100.0:
            target_position = 100.0
        if target_position < 0.0:
            target_position = 0.0
        while True:
            try:
                base_feedback = self.base_cyclic.Refresh(self.base_command)

                # Calculate speed according to position error (target position VS current position)
                position_error = target_position - base_feedback.interconnect.gripper_feedback.motor[
                    0].position

                # If positional error is small, stop gripper
                if abs(position_error) < 1.5:
                    position_error = 0
                    self.motorcmd.velocity = 0
                    self.base_cyclic.Refresh(self.base_command)
                    return True
                else:
                    self.motorcmd.velocity = self.proportional_gain * abs(
                        position_error)
                    if self.motorcmd.velocity > 100.0:
                        self.motorcmd.velocity = 100.0
                    self.motorcmd.position = 100.0
                    if position_error < 0.0:
                        self.motorcmd.position = 0.0
            except Exception as e:
                print("Error in refresh: " + str(e))
                return False
            time.sleep(0.001)
        return True