def on_train_begin(self, logs={}): self.train_loss = [] self.auc = [] self.logits = [] self.val_loss = [] # save json representation model_json = self.model.to_json() with open("/home/ahmed/output/" + RUN + "_json.json", "w") as json_file: json_file.write(model_json) dataFrameTrain, dataFrameValidate, dataFrameTest = manageDataFrames() # x_val, y_val, zeros, ones = getXandY(dataFrameValidate, imgSize) print("validation data:", x_val.shape, y_val.shape, zeros, ones) self.dataFrameValidate = dataFrameValidate self.y_val = y_val # lets do featurewiseCenterAndStd - its still a cube at this point # x_val_cs = centerAndStandardizeValTest(x_val,mean,std) x_val_cs = centerAndNormalize(x_val) # x_val_cs = x_val if fork: # lets get the 3 orientations self.x_val_a, self.x_val_s, self.x_val_c = krs.splitValTest( x_val_cs, finalSize, imgSize, count, mode, fork, skip) print("final val data:", self.x_val_a.shape, self.x_val_s.shape, self.x_val_c.shape) else: # lets get one only self.x_val = krs.splitValTest(x_val_cs, finalSize, imgSize, count, mode, fork, skip) print("final val data:", x_val.shape) return
# # dataFrameTest, dataFrameValidate, dataFrameTest = funcs.manageDataFrames() x_test = funcs.getX(dataFrameTest, imgSize) print("test data:", x_test.shape) # center and standardize # x_test_cs = funcs.centerAndStandardizeValTest(x_test,mean,std) x_test_cs = funcs.centerAndNormalize(x_test) if fork: # lets get the 3 orientations x_test_a, x_test_s, x_test_c = krs.splitValTest(x_test_cs, finalSize, imgSize, count, mode, fork, skip) print("final val data:", x_test_a.shape, x_test_s.shape, x_test_c.shape) else: x_test = krs.splitValTest(x_test_cs, finalSize, imgSize, count, mode, fork, skip) print("final val data:", x_test.shape) # # # .g8"""bgd `7MM"""YMM MMP""MM""YMM `7MMM. ,MMF' .g8""8q. `7MM"""Yb. `7MM"""YMM `7MMF' # .dP' `M MM `7 P' MM `7 MMMb dPMM .dP' `YM. MM `Yb. MM `7 MM # dM' ` MM d MM M YM ,M MM dM' `MM MM `Mb MM d MM # MM MMmmMM MM M Mb M' MM MM MM MM MM MMmmMM MM # MM. `7MMF' MM Y , MM M YM.P' MM MM. ,MP MM ,MP MM Y , MM ,