plot(x,y,'ok') savefig('obs_space.png') close() size = len(obs) size = size print '%0.1f data points'%size t0 = time.clock() #threshold = linspace(0.01,0.1,10) #k_list = [] #for t in threshold: # labels,k,centroids = ksmeans(obs,threshold[t],100) # k_list.append(k) #figure() #hist(k_list) #show() labels,k,centroids = ksmeans(obs,0.1,100) process = time.clock() - t0 print 'Process time: %0.2f secs'%process #a = [0,0] #b = [0,0] #acc_array = zeros((clusters,k)) #for l in range(clusters): # for m in range(k): # for n in range(len(obs[cls_labels == l])): # for o in range(len(obs[labels == m])): # a[0] = obs[cls_labels == l][n,0] # a[1] = obs[cls_labels == l][n,1] # b[0] = obs[labels == m][o,0] # b[1] = obs[labels == m][o,1] # if a == b:
import pylab from scipy import io from numpy import * import scipy from ksmeans import ksmeans import time # mat = io.loadmat('digits_full.mat') # digit_data = mat['digits'] digit_data = loadtxt("pendigits.csv", delimiter=",") print shape(digit_data) size = shape(digit_data) size = size[0] * size[1] t0 = time.clock() labels, k, centers = ksmeans(digit_data, 0.05, 100) process = time.clock() - t0 print "Process time: %0.2f secs" % process print "%0.1f data points" % size print k savetxt("digits_labels.txt", labels)