def test_klusters_loader_2(): # Open the mock data. dir = TEST_FOLDER xmlfile = os.path.join(dir, 'test.xml') l = KlustersLoader(filename=xmlfile) # Get full data sets. features = l.get_features() masks = l.get_masks() waveforms = l.get_waveforms() clusters = l.get_clusters() spiketimes = l.get_spiketimes() nclusters = len(Counter(clusters)) probe = l.get_probe() cluster_colors = l.get_cluster_colors() cluster_groups = l.get_cluster_groups() group_colors = l.get_group_colors() group_names = l.get_group_names() cluster_sizes = l.get_cluster_sizes() # Check selection. # ---------------- index = nspikes / 2 waveform = select(waveforms, index) cluster = clusters[index] spikes_in_cluster = np.nonzero(clusters == cluster)[0] nspikes_in_cluster = len(spikes_in_cluster) l.select(clusters=[cluster]) # Check the size of the selected data. # ------------------------------------ assert check_shape(l.get_features(), (nspikes_in_cluster, nchannels * fetdim + 1)) assert check_shape(l.get_masks(full=True), (nspikes_in_cluster, nchannels * fetdim + 1)) assert check_shape(l.get_waveforms(), (nspikes_in_cluster, nsamples, nchannels)) assert check_shape(l.get_clusters(), (nspikes_in_cluster,)) assert check_shape(l.get_spiketimes(), (nspikes_in_cluster,)) # Check waveform sub selection. # ----------------------------- waveforms_selected = l.get_waveforms() assert np.array_equal(get_array(select(waveforms_selected, index)), get_array(waveform)) l.close()
def test_klusters_loader_2(): # Open the mock data. dir = TEST_FOLDER xmlfile = os.path.join(dir, 'test.xml') l = KlustersLoader(filename=xmlfile) # Get full data sets. features = l.get_features() masks = l.get_masks() waveforms = l.get_waveforms() clusters = l.get_clusters() spiketimes = l.get_spiketimes() nclusters = len(Counter(clusters)) probe = l.get_probe() cluster_colors = l.get_cluster_colors() cluster_groups = l.get_cluster_groups() group_colors = l.get_group_colors() group_names = l.get_group_names() cluster_sizes = l.get_cluster_sizes() # Check selection. # ---------------- index = nspikes / 2 waveform = select(waveforms, index) cluster = clusters[index] spikes_in_cluster = np.nonzero(clusters == cluster)[0] nspikes_in_cluster = len(spikes_in_cluster) l.select(clusters=[cluster]) # Check the size of the selected data. # ------------------------------------ assert check_shape(l.get_features(), (nspikes_in_cluster, nchannels * fetdim + 1)) assert check_shape(l.get_masks(full=True), (nspikes_in_cluster, nchannels * fetdim + 1)) assert check_shape(l.get_waveforms(), (nspikes_in_cluster, nsamples, nchannels)) assert check_shape(l.get_clusters(), (nspikes_in_cluster, )) assert check_shape(l.get_spiketimes(), (nspikes_in_cluster, )) # Check waveform sub selection. # ----------------------------- waveforms_selected = l.get_waveforms() assert np.array_equal(get_array(select(waveforms_selected, index)), get_array(waveform)) l.close()
def test_klusters_loader_1(): # Open the mock data. dir = TEST_FOLDER xmlfile = os.path.join(dir, 'test.xml') l = KlustersLoader(filename=xmlfile) # Get full data sets. features = l.get_features() # features_some = l.get_some_features() masks = l.get_masks() waveforms = l.get_waveforms() clusters = l.get_clusters() spiketimes = l.get_spiketimes() nclusters = len(Counter(clusters)) probe = l.get_probe() cluster_colors = l.get_cluster_colors() cluster_groups = l.get_cluster_groups() group_colors = l.get_group_colors() group_names = l.get_group_names() cluster_sizes = l.get_cluster_sizes() # Check the shape of the data sets. # --------------------------------- assert check_shape(features, (nspikes, nchannels * fetdim + 1)) # assert features_some.shape[1] == nchannels * fetdim + 1 assert check_shape(masks, (nspikes, nchannels)) assert check_shape(waveforms, (nspikes, nsamples, nchannels)) assert check_shape(clusters, (nspikes,)) assert check_shape(spiketimes, (nspikes,)) assert check_shape(probe, (nchannels, 2)) assert check_shape(cluster_colors, (nclusters,)) assert check_shape(cluster_groups, (nclusters,)) assert check_shape(group_colors, (4,)) assert check_shape(group_names, (4,)) assert check_shape(cluster_sizes, (nclusters,)) # Check the data type of the data sets. # ------------------------------------- assert check_dtype(features, np.float32) assert check_dtype(masks, np.float32) # HACK: Panel has no dtype(s) attribute # assert check_dtype(waveforms, np.float32) assert check_dtype(clusters, np.int32) assert check_dtype(spiketimes, np.float32) assert check_dtype(probe, np.float32) assert check_dtype(cluster_colors, np.int32) assert check_dtype(cluster_groups, np.int32) assert check_dtype(group_colors, np.int32) assert check_dtype(group_names, object) assert check_dtype(cluster_sizes, np.int32) l.close()
def test_klusters_loader_1(): # Open the mock data. dir = TEST_FOLDER xmlfile = os.path.join(dir, 'test.xml') l = KlustersLoader(filename=xmlfile) # Get full data sets. features = l.get_features() # features_some = l.get_some_features() masks = l.get_masks() waveforms = l.get_waveforms() clusters = l.get_clusters() spiketimes = l.get_spiketimes() nclusters = len(Counter(clusters)) probe = l.get_probe() cluster_colors = l.get_cluster_colors() cluster_groups = l.get_cluster_groups() group_colors = l.get_group_colors() group_names = l.get_group_names() cluster_sizes = l.get_cluster_sizes() # Check the shape of the data sets. # --------------------------------- assert check_shape(features, (nspikes, nchannels * fetdim + 1)) # assert features_some.shape[1] == nchannels * fetdim + 1 assert check_shape(masks, (nspikes, nchannels)) assert check_shape(waveforms, (nspikes, nsamples, nchannels)) assert check_shape(clusters, (nspikes, )) assert check_shape(spiketimes, (nspikes, )) assert check_shape(probe, (nchannels, 2)) assert check_shape(cluster_colors, (nclusters, )) assert check_shape(cluster_groups, (nclusters, )) assert check_shape(group_colors, (4, )) assert check_shape(group_names, (4, )) assert check_shape(cluster_sizes, (nclusters, )) # Check the data type of the data sets. # ------------------------------------- assert check_dtype(features, np.float32) assert check_dtype(masks, np.float32) # HACK: Panel has no dtype(s) attribute # assert check_dtype(waveforms, np.float32) assert check_dtype(clusters, np.int32) assert check_dtype(spiketimes, np.float32) assert check_dtype(probe, np.float32) assert check_dtype(cluster_colors, np.int32) assert check_dtype(cluster_groups, np.int32) assert check_dtype(group_colors, np.int32) assert check_dtype(group_names, object) assert check_dtype(cluster_sizes, np.int32) l.close()
def test_hdf5_loader1(): # Open the mock data. dir = TEST_FOLDER filename = os.path.join(dir, 'test.xml') global nspikes nspikes_total = nspikes # Convert in HDF5. klusters_to_hdf5(filename) # Open the file. filename_h5 = os.path.join(dir, 'test.kwik') l = HDF5Loader(filename=filename_h5) lk = KlustersLoader(filename=filename) # Open probe. probe = l.get_probe() assert np.array_equal(probe[1]['channels'], np.arange(nchannels)) # Select cluster. cluster = 3 l.select(clusters=[cluster]) lk.select(clusters=[cluster]) # Get clusters. clusters = l.get_clusters('all') clusters_k = lk.get_clusters('all') nspikes = np.sum(clusters == cluster) # Check the clusters are correct. assert np.array_equal(get_array(clusters), get_array(clusters_k)) # Get the spike times. spiketimes = l.get_spiketimes() spiketimes_k = lk.get_spiketimes() assert np.all(spiketimes <= 60) # Check the spiketimes are correct. assert np.allclose(get_array(spiketimes), get_array(spiketimes_k)) # Get features. features = l.get_features() spikes = l.get_spikes() # Assert the indices in the features Pandas object correspond to the # spikes in the selected cluster. assert np.array_equal(features.index, spikes) # Assert the array has the right number of spikes. assert features.shape[0] == nspikes assert l.fetdim == fetdim assert l.nextrafet == 1 # Get all features. features = l.get_features('all') features_k = lk.get_features('all') assert type(features) == pd.DataFrame assert features.shape[0] == nspikes_total # Check the features are correct. f = get_array(features)[:,:-1] f_k = get_array(features_k)[:,:-1] normalize_inplace(f) normalize_inplace(f_k) assert np.allclose(f, f_k, atol=1e-5) # Get masks. masks = l.get_masks('all') masks_k = lk.get_masks('all') assert masks.shape[0] == nspikes_total # Check the masks. assert np.allclose(masks.values, masks_k.values, atol=1e-2) # Get waveforms. waveforms = l.get_waveforms().values waveforms_k = lk.get_waveforms().values assert np.array_equal(waveforms.shape, (nspikes, nsamples, nchannels)) # Check waveforms normalize_inplace(waveforms) normalize_inplace(waveforms_k) assert np.allclose(waveforms, waveforms_k, atol=1e-4) l.close()